1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

[Python][Julia]Project euler7 (プロジェクトオイラー7)

Last updated at Posted at 2024-01-01

Project euler Ploblem 7 (プロジェクトオイラー7)

10001st Prime

備忘のために残しておく。
コードを修正しました(指摘ありがとうございます)

問題

問題文 (意訳)

素数をはじめから順に6個並べると、2,3,5,7,11,13。6番目の素数は13だとわかる。
10001番目の素数は?

原文

By listing the first six prime numbers: 2, 3, 5, 7, 11 and 13 , we can see that the 6th prime is 13 .

What is the 10001st prime number?

解答

答え

104743

解答の方針

エラトステネスのふるいを使って10001個より大きい素数のリストを作成し、10001番目の素数をリストから取り出す。

Pythonのコード

Python Ploblem7
def eratosthenes(n: int) -> list:
    """エラトステネスのふるい"""
    isprime = [True] * (n+1)
    isprime[0], isprime[1] = False, False
    # ふるい
    for p in range(2, n + 1):
        # 素数以外(False)を飛ばす
        if not isprime[p]: 
            continue
        # p 以外の p の倍数をふるいにかける(TrueをFalseに)
        q = p + p
        while q <= n:
            isprime[q] = False
            q += p
    l = [x for x in range(n+1) if isprime[x]]
    return l

def seek_ans(limit: int, interval: int = 100000) -> int:
    # intervalは適当な値を置いている
    n = 2
    # セイウチ演算子を用いる
    while len(l := eratosthenes(n)) < limit:
        n += interval
    return l[limit-1]
        
print(seek_ans(10001))

Juliaのコード

Julia Ploblem7
function eratosthenes(n::Int64)::Vector{Int64}
    # エラトステネスのふるい
    isprime = fill(true, n+1)
    isprime[1] = false
    
    for p in 2:n
        if !isprime[p]
            continue
        end
        # p 以外の p の倍数をふるいにかける(TrueをFalseに)
        q = p + p
        while q <= n
            isprime[q] = false
            q += p
        end
    end
    
    l = [x for x in 1:n if isprime[x]]
    return l
end

function seek_ans(limit::Int64, interval::Int64 = 100000)::Int64
    # intervalは適当に置く
    n = 2
    while length(eratosthenes(n)) < limit
        n += interval
    end
    
    return eratosthenes(n)[limit]
end

println(seek_ans(10001))

追記

セイウチ演算子(:=)についての参考記事
セイウチ演算子って何?

1
0
10

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?