9
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

ガウス過程に基づく分類モデルの学習ノート

Last updated at Posted at 2019-04-20

はじめに

  • 日本語の書籍が入手できなかったので、以下の資料を参考にしました。
  • Gaussian Processes for Machine Learning (http://www.gaussianprocess.org/gpml/chapters/)
  • 「3 Classification」の再現コードとなります。
  • ラプラス近似のみ。Expectation propagationは除く。

Linear Models for Classification

入力データ$x$に対して$y=1$となる確率を$S(x^tw)$とする。$(y=\pm 1)$
ここで$S()$は、潜在変数$f=x^tw$を確率に変換するシグモイド関数である。
$S(-f)=1-S(f)$を満たすものとする。$y=-1$となる確率は$S(-x^tw)$となる。
$w$の事前分布を$N(0,\Sigma_p)$とする。
回帰モデルの場合と同様、$w$の事後分布を求めて、予測モデルから積分消去する。
テストデータ$x_∗$に対して$y_∗=1$となる確率は以下のようになる。

\begin{align}
p(y|x,w)&=S(yf)\quad (f=x^tw)\\
\log p(w|X,y)&\sim -\frac{1}{2}w^t\Sigma_p^{-1}w+\sum\log S(y_if_i)\\
p(y_*=1|x_*,X,y)&=\int p(y_*=1|x_*,w)p(w|X,y)dw\\
&=\int S(x_*^tw)p(w|X,y)dw
\end{align}

以下のサンプルでは、$w$は二次元で定数項はなしとする。$\Sigma_p=I_2$とする。
$S(f)=\frac{1}{1+\exp(-f)}$とする(ロジスティック関数)。
予測確率を求める積分は数値積分する(二次元)。
事前分布・尤度・事後分布・予測確率の等高線図を作成。

xp = c(-5,-1,-0.5,1,1,5)
yp = c(1,-5,-0.5,0,5,4)
X = rbind(xp,yp)
y = c(-1,-1,1,-1,1,1)

my_sigmoid = function(x){
  1 / (1 + exp(-x))
}

par(mfrow=c(2,2),mar=c(4,4,2,2))

my_draw_par = function(FUN,main,w1,w2){
  levels = FUN(w1,w2) - c(1,4,9,16)/4/2
  xgrid = seq(from=-2,to=2,by=0.01)
  ygrid = seq(from=-2,to=2,by=0.01)
  value = outer(xgrid,ygrid,FUN)
  contour(xgrid,ygrid,value,main=main,levels=levels,drawlabels=FALSE)
  abline(v=0,h=0,lty=2)
  points(w1,w2,pch=4)
}
my_prior = function(w1,w2){
  -(w1^2+w2^2) / 2
}
my_draw_par(my_prior,"prior",0,0)

my_likelihood = function(w1,w2){
  colSums(log(my_sigmoid(t(X) %*% rbind(w1,w2) * y)))
}
my_likelihood_optim = function(par){
  my_likelihood(par[1],par[2])
}
ret = optim(c(0,0),my_likelihood_optim,control=list(fnscale=-1))
ret
my_draw_par(my_likelihood,"likelihood",ret$par[1],ret$par[2])

my_posterior = function(w1,w2){
  my_likelihood(w1,w2) + my_prior(w1,w2)
}
my_posterior_optim = function(par){
  my_posterior(par[1],par[2])
}
ret = optim(c(0,0),my_posterior_optim,control=list(fnscale=-1))
ret
my_draw_par(my_posterior,"posterior",ret$par[1],ret$par[2])

# Numerical integration with posterior
w1_sample = ret$par[1]+seq(from=-2,to=2,by=0.2)
w2_sample = ret$par[2]+seq(from=-2,to=2,by=0.2)
v_sample = outer(w1_sample,w2_sample,my_posterior)
v_sample = exp(v_sample-max(v_sample))
v_sample = v_sample / sum(v_sample)

my_prob = function(x,y){
  apply(rbind(x,y),2,function(xy){
    fun = function(w1,w2){my_sigmoid(xy[1]*w1+xy[2]*w2)}
    sum(outer(w1_sample,w2_sample,fun) * v_sample)
  })
}
my_contour = function(){
  levels = c(0.1,0.25,0.5,0.75,0.9)
  xgrid = seq(from=-6,to=6,by=0.05)
  ygrid = seq(from=-6,to=6,by=0.05)
  value = outer(xgrid,ygrid,my_prob)
  contour(xgrid,ygrid,value,main="probability",levels=levels)
  abline(v=0,h=0,lty=2)
  points(X[1,],X[2,],type="p",pch=ifelse(y==1,1,4))
}
my_contour()

classification_0.png

Gaussian Process Classification

潜在変数$f$がGPに従うとすると予測モデルは以下のようになる。
ここで$K(a,b)$は、$f$の共分散行列を定めるカーネル関数である。
$K=K(X,X),K_*=K(X,x_*)$と略記する。

\begin{align}
p(f|X)&=N(0,K)\\
p(y|f)&=\prod S(y_if_i)\\
p(f|X,y)&\sim p(f|X)p(y|f)\\
p(f_*|X,x_*,f)&=N(K_*^tK^{-1}f,K(x_*,x_*)-K_*^tK^{-1}K_*)\\
p(f_*|X,y,x_*)&=\int p(f_*|X,x_*,f)p(f|X,y)df\\
p(y_*=1|X,y,x_*)&=\int S(f_*)p(f_*|X,y,x_*)df_*
\end{align}

このままでは計算が困難なため、事後分布$p(f|X,y)$を正規分布で近似する。(ラプラス近似)

The Laplace Approximation for the Binary GP Classifier

ラプラス近似では、事後分布の対数値の最大値を求めて、
これを中心とする二次のテーラー展開で事後分布を近似する。
事後分布の対数値$\Psi(f)$を最大化する$\hat{f}$をニュートン法で求める。

\begin{align}
\Psi(f)&\triangleq\log p(y|f)+\log p(f|X)\\
\nabla\Psi(f)&=\nabla\log p(y|f)-K^{-1}f=0\\
\nabla^2\Psi(f)&=\nabla^2\log p(y|f)-K^{-1}=-W-K^{-1}\\
f^{\mathrm{new}}&=f-(-W-K^{-1})^{-1}(\nabla\log p(y|f)-K^{-1}f)\\
&=(K^{-1}+W)^{-1}(Wf+\nabla\log p(y|f))\\
\Psi(f)&\simeq\Psi(\hat{f})-\frac{1}{2}(f-\hat{f})^t(K^{-1}+W)(f-\hat{f})\\
p(f|X,y)&\simeq N(\hat{f},(K^{-1}+W)^{-1})
\end{align}

$W=-\nabla^2\log p(y|\hat{f})$であり、データが互いに独立であることから、対角行列となる。
ここで$p(f_*|X,x_*,f)=N(K_*^tK^{-1}f,K(x_*,x_*)-K_*^tK^{-1}K_*)$なので、
$p(f_*|X,y,x_*)=\int p(f_*|X,x_*,f)p(f|X,y)df$もまた正規分布となる。
$f_*$の平均値と分散は以下のようになる。

\begin{align}
E[f_*|X,y,x_*]&=\iint f_*p(f_*|X,x_*,f)p(f|X,y)df_*df\\
&=\int K_*^tK^{-1}fp(f|X,y)df\\
&=K_*^tK^{-1}\hat{f}=K_*^t\nabla\log p(y|\hat{f})\\
Var(f_*|X,y,x_*)&=K(x_*,x_*)-K_*^t(K+W^{-1})^{-1}K_*
\end{align}

テストデータ$x_∗$に対して$y_∗=1$となる確率は以下のようになる。

\begin{align}
p(y_*=1|X,y,x_*)&=\int S(f_*)p(f_*|X,y,x_*)df_*\\
&=\int S(f_*)N(f_*|\mu_*,\sigma_*^2)df_*
\end{align}

周辺尤度の近似値は以下のようになる。

\begin{align}
\log p(y|X)&=-\frac{1}{2}\hat{f}^tK^{-1}\hat{f}+\log p(y|\hat{f})-\frac{1}{2}\log|I+WK|
\end{align}

計算を安定化させるために行列を変形。

\begin{align}
(K^{-1}+W)^{-1}&=K-KW^{\frac{1}{2}}B^{-1}W^{\frac{1}{2}}K\\
B&=I+W^{\frac{1}{2}}KW^{\frac{1}{2}}\\
(K+W^{-1})^{-1}&=W^{\frac{1}{2}}B^{-1}W^{\frac{1}{2}}\\
|I+WK|&=|B|
\end{align}

A Toy Problem & Laplace Approximation

カーネル関数$K(a,b)=\sigma_k^2\exp\left(-\frac{|a-b|^2}{2l^2}\right)$
シグモイド関数$S(f)=\frac{1}{1+\exp(-f)}$
予測確率を求める積分は数値積分する(一次元)。

サンプルデータ

xp = c(0.18,0.41,0.47,0.57,0.64,0.65,0.67,0.78,0.86,0.89,0.11,0.13,0.14,0.19,0.23,0.28,0.36,0.41,0.46,0.79)
yp = c(0.26,0.63,0.15,0.78,0.67,0.53,0.38,0.8 ,0.6 ,0.79,0.88,0.12,0.42,0.62,0.76,0.5 ,0.28,0.45,0.88,0.71)
X = rbind(xp,yp)
y = c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1)

カーネル関数とシグモイド関数

my_kernel = function(X1,X2,k_sigma,k_scale){
  apply(X2,2,function(a){
    k_sigma^2*exp(colSums(-(X1-a)^2)/2/k_scale^2)
  })
}
my_kernel_var = function(X,k_sigma,k_scale){
  rep(k_sigma^2,ncol(X))
}
my_sigmoid = function(y,f){
  1 / (1 + exp(-y * f))
}
my_sigmoid_log_1st = function(y,f,prob){
  y * (1-prob)
}
my_sigmoid_log_2nd = function(y,f,prob){
  prob * (1-prob)
}

ラプラス近似

my_laplace_calc = function(k_scale,k_sigma){
  K11 = my_kernel(X,X,k_sigma,k_scale)
  n = length(y)
  f = seq(from=0,to=1,length.out=n)
  while(TRUE){
    prob = my_sigmoid(y,f)
    V1 = my_sigmoid_log_1st(y,f,prob)
    V2 = my_sigmoid_log_2nd(y,f,prob)
    V2q = sqrt(pmax(V2,0))
    B = diag(n) + t(K11 * V2q) * V2q
    L = chol(B) # t(L) %*% L
    b = V2 * f + V1
    a = b - backsolve(L,forwardsolve(t(L),(K11 %*% b) * V2q)) * V2q
    f0 = f
    f = drop(K11 %*% a)
    if(max(abs(f - f0))<1e-5)break
  }
  list(f=f,prob=prob,V1=V1,V2=V2,V2q=V2q,L=L,a=a)
}

予測確率の等高線図

カーネル関数のパラメータ$\sigma_k,l$を変化させて予測確率の等高線図を作成。

par(mfrow=c(2,2),mar=c(4,4,2,2),oma=c(0,0,0,0))

plot(X[1,],X[2,],type="p",xlab="",ylab="",pch=ifelse(y==1,1,20),xlim=c(0,1),ylim=c(0,1))

my_contour = function(k_sigma,k_scale){
  calc = my_laplace_calc(k_scale,k_sigma)
  evidence = -sum(calc$a * calc$f) / 2 + sum(log(calc$prob)) - sum(log(diag(calc$L)))
  print(evidence)
  my_prob = function(x,y){
    xy = rbind(x,y)
    K21 = my_kernel(xy,X,k_sigma,k_scale)
    K22 = my_kernel_var(xy,k_sigma,k_scale)
    v = forwardsolve(t(calc$L),t(K21) * calc$V2q)
    f_mean = drop(K21 %*% calc$V1)
    f_var = K22 - colSums(v^2)
    # Numerical integration
    u_sample = seq(from=-4,to=4,by=0.1)
    f_sample = f_mean + sqrt(f_var) %*% t(u_sample)
    colSums(t(my_sigmoid(1,f_sample)) * dnorm(u_sample)) * 0.1
  }
  levels = c(0.25,0.5,0.75)
  xgrid = seq(from=0,to=1,by=0.01)
  ygrid = seq(from=0,to=1,by=0.01)
  value = outer(xgrid,ygrid,my_prob)
  main = paste(sprintf("%.3g",c(k_sigma,k_scale)),collapse=",")
  contour(xgrid,ygrid,value,levels=levels,main=main)
  points(X[1,],X[2,],type="p",pch=ifelse(y==1,1,20))
  legend("bottomright",legend=sprintf("evidence=%.3g",evidence),bty="n")
}
my_contour(3,0.1)
my_contour(3,0.2)
my_contour(3,0.3)

classification_5.png

Binary Handwritten Digit Classification Example

カーネル関数$K(a,b)=\sigma_k^2\exp\left(-\frac{|a-b|^2}{2l^2}\right)$
シグモイド関数$S(f)=\Phi(f)$
シグモイド関数としてプロビット関数を使用する場合、予測確率を解析的に計算できる。
テストデータ$x_∗$に対して$y_∗=1$となる確率は以下のようになる。

\begin{align}
p(y_*=1|X,y,x_*)&=\int \Phi(f_*)N(f_*|\mu_*,\sigma_*^2)df_*
=\Phi\left(\frac{\mu_*}{\sqrt{1+\sigma_*^2}}\right)
\end{align}

サンプルデータの入手

USPS handwritten digit data
http://www.gaussianprocess.org/gpml/data/

library("R.matlab")
mat_data <- readMat('usps_resampled.mat')

index3 = which(mat_data$train.labels[3+1,] == 1)
index5 = which(mat_data$train.labels[5+1,] == 1)
pattern3 = mat_data$train.patterns[,index3]
pattern5 = mat_data$train.patterns[,index5]
y_train = c(rep(1,length(index3)),rep(-1,length(index5)))
x_train = cbind(pattern3,pattern5)

index3 = which(mat_data$test.labels[3+1,] == 1)
index5 = which(mat_data$test.labels[5+1,] == 1)
pattern3 = mat_data$test.patterns[,index3]
pattern5 = mat_data$test.patterns[,index5]
y_test = c(rep(1,length(index3)),rep(-1,length(index5)))
x_test = cbind(pattern3,pattern5)

カーネル関数とシグモイド関数

my_kernel = function(X1,X2,k_sigma,k_scale){
  apply(X2,2,function(a){
    k_sigma^2*exp(colSums(-(X1-a)^2)/2/k_scale^2)
  })
}
my_kernel_var = function(X,k_sigma,k_scale){
  rep(k_sigma^2,ncol(X))
}
my_sigmoid = function(y,f){
  pnorm(y * f)
}
my_sigmoid_log_1st = function(y,f,prob){
  y * dnorm(f) / prob
}
my_sigmoid_log_2nd = function(y,f,prob){
  a = dnorm(f) / prob
  a * (a + y * f)
}

ラプラス近似と周辺尤度

my_laplace_calc = function(k_scale,k_sigma){
  K11 = my_kernel(x_train,x_train,k_sigma,k_scale)
  n = length(y_train)
  f = seq(from=0,to=1,length.out=n)
  while(TRUE){
    prob = my_sigmoid(y_train,f)
    V1 = my_sigmoid_log_1st(y_train,f,prob)
    V2 = my_sigmoid_log_2nd(y_train,f,prob)
    V2q = sqrt(pmax(V2,0))
    B = diag(n) + t(K11 * V2q) * V2q
    L = chol(B) # t(L) %*% L
    b = V2 * f + V1
    a = b - backsolve(L,forwardsolve(t(L),(K11 %*% b) * V2q)) * V2q
    f0 = f
    f = drop(K11 %*% a)
    if(max(abs(f - f0))<1e-5)break
  }
  list(f=f,prob=prob,V1=V1,V2=V2,V2q=V2q,L=L,a=a)
}
my_evidence = function(k_scale,k_sigma){
  calc = my_laplace_calc(k_scale,k_sigma)
  lml = -sum(calc$a * calc$f) / 2 + sum(log(calc$prob)) - sum(log(diag(calc$L)))
  K21 = my_kernel(x_test,x_train,k_sigma,k_scale)
  K22 = my_kernel_var(x_test,k_sigma,k_scale)
  v = forwardsolve(t(calc$L),t(K21) * calc$V2q)
  f_mean = drop(K21 %*% calc$V1)
  f_var = K22 - colSums(v^2)
  info = -mean(pnorm(y_test*f_mean/sqrt(1+f_var),log=T))
  info0 = -sum(log(table(y_train)/length(y_train)) * (table(y_test)/length(y_test)))
  info = (info0 - info)/log(2)
  error = sum(ifelse((y_test*f_mean)>0,0,1))
  c(lml,info,error)
}

Marginal likelihood Maximization

周辺尤度を最大化するパラメータを算出。資料に記載されている値とは少し差がある。

my_evidence_optim = function(par){
  k_scale = exp(par[1])
  k_sigma = exp(par[2])
  K11 = my_kernel(x_train,x_train,k_sigma,k_scale)
  n = length(y_train)
  f = seq(from=0,to=1,length.out=n)
  while(TRUE){
    prob = my_sigmoid(y_train,f)
    V1 = my_sigmoid_log_1st(y_train,f,prob)
    V2 = my_sigmoid_log_2nd(y_train,f,prob)
    V2q = sqrt(pmax(V2,0))
    B = diag(n) + t(K11 * V2q) * V2q
    L = chol(B) # t(L) %*% L
    b = V2 * f + V1
    a = b - backsolve(L,forwardsolve(t(L),(K11 %*% b) * V2q)) * V2q
    f0 = f
    f = drop(K11 %*% a)
    if(max(abs(f - f0))<1e-5)break
  }
  -sum(a * f) / 2 + sum(log(prob)) - sum(log(diag(L)))
}
ret_optim = optim(c(2.85,2.35),my_evidence_optim,control=list(fnscale=-1))
> ret_optim
$par
[1] 2.755177 2.277937

> my_evidence_optim(ret_optim$par)
[1] -98.86856

> my_evidence_optim(c(2.85,2.35))
[1] -98.96438

Marginal likelihood and Information

並列処理パッケージを使用。計算には7分くらいかかる。

library(parallel)

cores = detectCores()
cl = makeCluster(cores,type="PSOCK")

clusterExport(cl,c("x_train","y_train","x_test","y_test"))
clusterExport(cl,c("my_sigmoid","my_sigmoid_log_1st","my_sigmoid_log_2nd"))
clusterExport(cl,c("my_kernel","my_kernel_var","my_laplace_calc","my_evidence"))

par(mfrow=c(1,2),mar=c(4,4,2,2))
my_contour = function(){
  xgrid = seq(from=1.125,to=5.125,by=0.25)
  ygrid = seq(from=-0.375,to=5.125,by=0.25)
  xygrid = as.matrix(expand.grid(xgrid,ygrid))
  ret = parApply(cl,xygrid,1,function(xy){my_evidence(exp(xy[1]),exp(xy[2]))})
  lml = matrix(ret[1,],nrow=length(xgrid))
  info = matrix(ret[2,],nrow=length(xgrid))
  error = matrix(ret[3,],nrow=length(xgrid))

  par(mfrow=c(2,2),mar=c(4,4,2,2))
  levels = c(-100,-105,-115,-130,-150,-200)
  contour(xgrid,ygrid,lml,xlab="log(l)",ylab="log(sf)",levels=levels,main="Log marginal likelihood")
  abline(v=c(1,2,3,4,5),h=c(0,1,2,3,4,5),lty=2)
  points(x=2.85,y=2.35,pch=3)
  levels = c(0.84,0.8,0.7,0.5,0.25)
  contour(xgrid,ygrid,info,xlab="log(l)",ylab="log(sf)",levels=levels,main="Information about test targets in bits")
  abline(v=c(1,2,3,4,5),h=c(0,1,2,3,4,5),lty=2)
  plot(x=0,xlim=c(min(xgrid),max(xgrid)),ylim=c(min(ygrid),max(ygrid)),type="n",
    xlab="log(l)",ylab="log(sf)",main="Number of test misclassifications")
  for(i in seq(length(xgrid))){
    for(j in seq(length(ygrid))){
      if(error[i,j]>=100)next
      text(x=xgrid[i],y=ygrid[j],labels=error[i,j],cex=0.8)
    }
  }
}
my_contour()

stopCluster(cl)

classification_1.png

Histogram of the latent means

par(mfcol=c(2,1),mar=c(4,4,2,2))
k_scale = exp(2.85)
k_sigma = exp(2.35)
ret_calc = my_laplace_calc(k_scale,k_sigma)
hist(ret_calc$f,breaks=seq(from=-9.3,to=7.5,by=0.2),xlab="latent means,f",main="Training set latent means")

K21 = my_kernel(x_test,x_train,k_sigma,k_scale)
f_mean = drop(K21 %*% ret_calc$V1)
hist(f_mean,breaks=seq(from=-9.3,to=7.6,by=0.2),xlab="latent means,f",main="Test set latent means")

classification_3.png

9
7
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
9
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?