5
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

半導体ウェハー生産計画の最適化

Last updated at Posted at 2020-02-15

#はじめに

#生産計画の仕様

  • ロットは、ウエハーの数(n)、優先度(priority)、生産開始可能日(release_date)、納期(due_date)を持つ。
  • ロット毎に、生産ステップのシーケンスが与えられる。
  • ロットを構成するステップの間隔(lag)が長くなるとコストが発生する。
  • 各ステップはファミリー(f)を持つ。
  • ファミリーに対して、生産可能なマシンと生産時間(process_time)が与えられる。
  • ファミリーが同じステップは同時に生産することができる。開始と終了は同じとなる。
  • 生産するステップのファミリーを切替えるには一定の時間が掛かる。
  • マシンはキャパシティ(capacity)を持つ。同時に生産できるウエハー数の上限値。
  • 最小化する指標は、ステップ間隔コスト$V_1$と納期遅れコスト$V_2$の二つ。
\begin{align*}
V_1&=\sum_{\mathrm{Step}} \min(c,c\max(0,\mathrm{lag}-a)^2/(b-a)^2)\\
V_2&=\sum_{\mathrm{Lot}} p\max(0,\mathrm{EndOfLot}-\mathrm{DueDate})
\end{align*}
  • ロット数: 1000
  • ステップ数: 5000
  • マシン数: 150
  • 各ステップが生産可能なマシン数: 10
  • 生産計画の期間は48時間で分単位

#CP Optimizerによる実装

  • プログラミング言語はOPL。CPLEX Optimization Studioで実行。
  • 50行でExcellent Performanceが得られるとのこと。
  • 変数名を長めに変更。
using CP;
tuple Lot { key int id; int n; float priority; int release_date; int due_date; }
tuple LotStep { key Lot lot; key int pos; int f; }
tuple Lag { Lot lot; int pos1; int pos2; int a; int b; float c; }
tuple Machine { key int id; int capacity; }
tuple MachineFamily { Machine machine; int f; int process_time; }
tuple MachineStep { Machine machine; LotStep lot_step; int process_time; }
tuple Setup { int f1; int f2; int duration; }

{Lot} Lots = ...;
{LotStep} LotSteps = ...;
{Lag} Lags = ...;
{Machine} Machines = ...;
{MachineFamily} MachineFamilies = ...;
{Setup} MachineSetups[machine in Machines] = ...;

{MachineStep} MachineSteps = {<machine_family.machine,lot_step,machine_family.process_time>
  | lot_step in LotSteps, machine_family in MachineFamilies: machine_family.f==lot_step.f};

dvar interval d_lot[lot in Lots] in lot.release_date .. 48*60;
dvar interval d_lot_step[lot_step in LotSteps];
dvar interval d_machine_step[ms in MachineSteps] optional size ms.process_time;

dvar int d_lag[Lags];

stateFunction batch[machine in Machines] with MachineSetups[machine];
cumulFunction load [machine in Machines] = 
  sum(ms in MachineSteps: ms.machine==machine) pulse(d_machine_step[ms], ms.lot_step.lot.n);

minimize staticLex(
  sum(lag in Lags) minl(lag.c, lag.c * maxl(0, d_lag[lag]-lag.a)^2 / (lag.b-lag.a)^2),
  sum(lot in Lots) lot.priority * maxl(0, endOf(d_lot[lot]) - lot.due_date));
subject to {
  forall(lot in Lots)
    span(d_lot[lot], all(lot_step in LotSteps: lot_step.lot==lot) d_lot_step[lot_step]);
  forall(lot_step in LotSteps) {
    alternative(d_lot_step[lot_step], all(ms in MachineSteps: ms.lot_step==lot_step) d_machine_step[ms]);
    if (lot_step.pos > 1)
      endBeforeStart(d_lot_step[<lot_step.lot,lot_step.pos-1>],d_lot_step[lot_step]);
  }
  forall(ms in MachineSteps)
    alwaysEqual(batch[ms.machine], d_machine_step[ms], ms.lot_step.f, true, true);
  forall(machine in Machines)
    load[machine] <= machine.capacity;
  forall(lag in Lags)
    endAtStart(d_lot_step[<lag.lot,lag.pos1>], d_lot_step[<lag.lot,lag.pos2>], d_lag[lag]);
}

#サンプルデータの作成

乱数を使用してサンプルデータを作成。
alphaは生産開可能なマシンの比率。

from dataclasses import dataclass, field
import docplex.cp.model as cp
from docplex.cp.expression import CpoIntervalVar
import random
import pandas as pd
import numpy as np

@dataclass
class lot_type:
    id: int
    n: int
    priority: float
    release_date: int
    due_date: int
    step_list: list

@dataclass
class step_type:
    id: int
    family: int
    a: float
    b: float
    c: float
    start: int = field(init=False, default=0)
    end: int = field(init=False, default=0)
    machine_id: int = field(init=False, default=0)

@dataclass
class machine_type:
    id: int
    capacity: int
    setup_list: list
    proc_time: dict = field(init=False, default_factory=dict)
    job_list: list = field(init=False, default_factory=list)

@dataclass
class setup_type:
    family1: int
    family2: int
    duration: int

@dataclass
class job_type:
    n: int
    family: int
    interval_var: CpoIntervalVar
    start: int = field(init=False, default=0)
    end: int = field(init=False, default=0)
random.seed(5)

n_lot, n_step, n_family, n_machine = 4, 5, 3, 4
lot_n = (5, 15)
capa = (20, 60)
proc_time = (20, 30)
takt, LT = 30, 100
a, b, c = 10, 20, 5
alpha = 0.5
duration = 20

lot_list = []
for l in range(n_lot):
    n = random.randint(lot_n[0], lot_n[1])
    p = random.randint(1, 10) / 10
    step_list = [step_type(s, random.randint(0, n_family-1), a, b, c) for s in range(n_step)]
    lot = lot_type(l, n, p, takt*l, takt*l+LT, step_list)
    lot_list.append(lot)

machine_list = []
for m in range(n_machine):
    setup_list = []
    for j in range(n_family):
        for k in range(n_family):
            setup_list.append(setup_type(j, k, 0 if j == k else duration))
    c = random.randint(capa[0], capa[1])
    machine = machine_type(m, c, setup_list)
    machine_list.append(machine)

for f in range(n_family):
    cnt = 0
    for m in range(n_machine):
        if random.random() > alpha: continue
        machine_list[m].proc_time[f] = random.randint(proc_time[0], proc_time[1])
        cnt += 1
    if cnt == 0:
        m = random.randint(0, n_machine-1)
        machine_list[m].proc_time[f] = random.randint(proc_time[0], proc_time[1])

#CPLEX Optimization Studio用データの作成

path_file_name = 'sample.dat'
def mytuple(obj):
    if type(obj) == lot_type:
        return f'<{obj.id},{obj.n},{obj.priority},{obj.release_date},{obj.due_date}>'
    if type(obj) == machine_type:
        return f'<{obj.id},{obj.capacity}>'

with open(path_file_name, 'w') as o:
    o.write('Lots = {\n')
    for lot in lot_list:
        o.write(f'  {mytuple(lot)}\n')
    o.write('};\n')
    o.write('LotSteps = {\n')
    for lot in lot_list:
        for s, step in enumerate(lot.step_list):
            o.write(f'  <{mytuple(lot)},{s+1},{step.family}>\n')
    o.write('};\n')
    o.write('Lags = {\n')
    for lot in lot_list:
        for l in range(len(lot.step_list)-1):
            step = step_list[s]
            o.write(f'  <{mytuple(lot)},{l+1},{l+2},{step.a},{step.b},{step.c}>\n')
    o.write('};\n')
    o.write('Machines = {\n')
    for machine in machine_list:
        o.write(f'  {mytuple(machine)}\n')
    o.write('};\n')
    o.write('MachineFamilies = {\n')
    for machine in machine_list:
        for f, proc_time in machine.proc_time.items():
            o.write(f'  <{mytuple(machine)},{f},{proc_time}>\n')
    o.write('};\n')
    o.write('MachineSetups = #[\n')
    for machine in machine_list:
        o.write(f'  <{machine.id}>:{{')
        for setup in machine.setup_list:
            o.write(f'<{setup.family1},{setup.family2},{setup.duration}>')
        o.write('}\n')
    o.write(']#;\n')

#Python Libraryによる実装

サンプルデータの作成で使用したオブジェクトをそのまま流用。
モデルの作成と最適化、結果出力。

model = cp.CpoModel()
interval_name_to_step = {}
for lot in lot_list:
    lot.interval_var = cp.interval_var(start=[lot.release_date,48*60], end=[lot.release_date,48*60], name=f'I{lot.id}')
    for s, step in enumerate(lot.step_list):
        step.interval_var = cp.interval_var(name=f'I{lot.id}_{s}')
        interval_list = []
        for machine in machine_list:
            if step.family not in machine.proc_time: continue
            name = f'I{lot.id}_{s}_{machine.id}'
            interval_var = cp.interval_var(length=machine.proc_time[step.family], optional=True, name=name)
            interval_list.append(interval_var)
            machine.job_list.append(job_type(lot.n, step.family, interval_var))
            interval_name_to_step[interval_var.name] = step
        model.add(cp.alternative(step.interval_var, interval_list))
    model.add(cp.span(lot.interval_var, [step.interval_var for step in lot.step_list]))
    for s in range(len(lot.step_list)-1):
        lot.step_list[s].int_var = cp.integer_var(min=0, max=48*60, name=f'A{lot.id}_{s}')
        model.add(cp.end_at_start(lot.step_list[s].interval_var, lot.step_list[s+1].interval_var, lot.step_list[s].int_var))

for machine in machine_list:
    tmat = cp.transition_matrix(n_family)
    for setup in machine.setup_list:
        tmat.set_value(setup.family1, setup.family2, setup.duration)
    state = cp.state_function(tmat, name=f'S{machine.id}')
    pulse_list = []
    for job in machine.job_list:
        model.add(cp.always_equal(state, job.interval_var, job.family, True, True))
        pulse_list.append(cp.pulse(job.interval_var, job.n))
    model.add(cp.sum(pulse_list) <= machine.capacity)

lag_list = []
for lot in lot_list:
    for s in range(len(lot.step_list)-1):
        step = lot.step_list[s]
        lag_list.append(cp.min(step.c, step.c * cp.square(cp.max(0, step.int_var - step.a)) / (step.b - step.a)**2))
obj_lag = cp.sum(lag_list)
obj_lot = cp.sum([lot.priority * cp.max(0, cp.end_of(lot.interval_var) - lot.due_date) for lot in lot_list])
model.add(cp.minimize_static_lex([obj_lag, obj_lot]))

msol = model.solve(LogVerbosity='Terse', Workers=2, NoOverlapInferenceLevel='Medium', RandomSeed=1)
print(msol.get_search_status(), msol.get_objective_values())

#最適化結果の出力

for machine in machine_list:
    for job in machine.job_list:
        x = msol.get_value(job.interval_var)
        if(len(x) == 0):
            job.n = 0
            continue
        job.start = x[0]
        job.end = x[1]
        step = interval_name_to_step[job.interval_var.name]
        step.start = job.start
        step.end = job.end
        step.machine_id = machine.id

result = []
for lot in lot_list:
    for step in lot.step_list:
        result.append([lot.id, lot.n, lot.priority, lot.release_date, lot.due_date,
                       step.id, step.family, step.start, step.end, (step.end-step.start),
                       step.machine_id, machine_list[step.machine_id].capacity])
result = pd.DataFrame(result, columns=['lot', 'n', 'priority', 'release_date', 'due_date',
                                       'step', 'family', 'start', 'end', 'size',
                                       'machine', 'capacity'])
result.sort_values(['lot', 'start'], inplace=True, ignore_index=True)
result.to_csv('semi_cplex.csv', index=False)

#実行結果

最適解が得られた。計算時間は0.1秒程度。
CP OptimizerでもPythonでも同一の結果となった。

l n priority release_date due_date pos f start end length m capacity
0 14 0.5 0 100 0 2 0 23 23 1 44
0 14 0.5 0 100 1 1 30 53 23 2 30
0 14 0.5 0 100 2 2 53 76 23 1 44
0 14 0.5 0 100 3 2 76 99 23 1 44
0 14 0.5 0 100 4 2 99 122 23 1 44
1 13 0.1 30 130 0 1 30 53 23 2 30
1 13 0.1 30 130 1 0 53 76 23 3 24
1 13 0.1 30 130 2 2 76 99 23 1 44
1 13 0.1 30 130 3 0 99 128 29 0 31
1 13 0.1 30 130 4 0 128 151 23 3 24
2 6 0.6 60 160 0 1 60 83 23 2 30
2 6 0.6 60 160 1 0 83 106 23 3 24
2 6 0.6 60 160 2 1 106 129 23 2 30
2 6 0.6 60 160 3 2 129 152 23 1 44
2 6 0.6 60 160 4 0 152 172 20 2 30
3 14 0.4 90 190 0 0 99 128 29 0 31
3 14 0.4 90 190 1 2 129 152 23 1 44
3 14 0.4 90 190 2 0 152 172 20 2 30
3 14 0.4 90 190 3 1 172 194 22 1 44
3 14 0.4 90 190 4 1 194 216 22 1 44

#ガントチャートの出力

import matplotlib
import matplotlib.pyplot as plt
from matplotlib import gridspec

area_w = max([step.end for lot in lot_list for step in lot.step_list])
lot_h = np.array([lot.n for lot in lot_list])
area_lot_h = sum(lot_h)
machine_h = np.array([machine.capacity for machine in machine_list])
area_machine_h = sum(machine_h)

for machine in machine_list:
    machine.job_list.sort(key=lambda job: job.start)
    i = 0
    j = 1
    while i < len(machine.job_list) and j < len(machine.job_list):
        job_i = machine.job_list[i]
        job_j = machine.job_list[j]
        if job_i.n == 0 or job_i.start < job_j.start:
            i = j
            j = j+1
            continue
        if job_j.n == 0:
            j = j+1
            continue
        job_i.n += job_j.n
        job_j.n = 0
        j = j+1

lot_y = np.cumsum(lot_h) - lot_h
def lot_generator():
    for lot in lot_list:
        for step in lot.step_list:
            yield (step.start, lot_y[lot.id], (step.end-step.start), lot.n, step.family, f'{step.machine_id}-{step.family}')

machine_y = np.cumsum(machine_h) - machine_h
def machine_generator():
    for machine in machine_list:
        for job in machine.job_list:
            if job.n == 0: continue
            yield (job.start, machine_y[machine.id], (job.end-job.start), job.n, job.family, f'{machine.id}-{job.family}')

my_rect = matplotlib.patches.Rectangle
cmap = plt.cm.get_cmap('hsv', n_family+1)
fig = plt.figure(figsize=(12, 8))
spec = gridspec.GridSpec(ncols=1, nrows=2, height_ratios=[area_lot_h, area_machine_h])

def draw_box(ax, box_generator):
    for (x,y,w,h,f,lab) in box_generator():
        rectangle = my_rect((x, y), w, h, fill=False, color=cmap(f), hatch='/')
        ax.add_patch(rectangle)
        rx, ry = rectangle.get_xy()
        cx = rx + rectangle.get_width()/2
        cy = ry + rectangle.get_height()/2
        ax.annotate(lab, (cx, cy), ha='center', va='center')

ax = fig.add_subplot(spec[0], yticks=[], ylabel='Lot')
ax.set_xlim(0, area_w)
ax.set_ylim(0, area_lot_h)
draw_box(ax, lot_generator)

ax = fig.add_subplot(spec[1], yticks=[], ylabel='Machine')
ax.set_xlim(0, area_w)
ax.set_ylim(0, area_machine_h)
draw_box(ax, machine_generator)

plt.show()

gant.png

ボックスの色はファミリーを表している。中のラベルはマシン番号とファミリー番号。
ファミリーの切り替えロスを避けるために、同じファミリーをなるべく連続して生産している。
同じファミリーであれば、マシンのキャパシティの範囲で、まとめ生産が可能。

#おわりに

  • 少し複雑な問題でも手軽に最適解が得られることは驚異的。
  • Interval変数とOptional属性を使用すると生産計画モデルを簡単に表現することができる。
  • ロット数1000でも解が得られるかどうかは未検証。Community Editionでは変数が多すぎる。
5
3
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?