0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

量について

Last updated at Posted at 2015-02-22

$\newcommand{\X}{\mathrm{X}}\newcommand{\kg}{\mathrm{kg}}\newcommand{\m}{\mathrm{m}}\newcommand{\s}{\mathrm{s}}\newcommand{\K}{\mathrm{K}}\newcommand{\J}{\mathrm{J}}\newcommand{\N}{\mathrm{N}}\newcommand{\A}{\mathrm{A}}\newcommand{\b}{\mathrm{b}}\newcommand{\B}{\mathrm{B}}\newcommand{\Ki}{\mathrm{Ki}}\newcommand{\Mi}{\mathrm{Mi}}\newcommand{\Gi}{\mathrm{Gi}}$

次元の除去

物理量や情報量を単位抜きで扱いたい.数についての対数表示を利用すれば十分実用的だと思われるし,古典物理学や量子力学を具体的な数値として量的に把握することができるような気がする.

$4 \pi G = c = \varepsilon_0 = \mu_0 = k = h/2 \pi i = 1$とする.

普通は$\hbar = h/2\pi = 1$とするが,それでは次元が退化しすぎる感じだし,
$pq - qp = h/2\pi i$だけ見ても,$h = 2\pi i$とみなしたくなる.

これらの量を慣用の単位系で表して
$c = 299792458\ \m\ \s^{-1} = 1$
$h = 6.626070040 \times 10^{-34}\ \kg\ \m^2 \s^{-1} = 2 \pi i$
$G = 6.67408 \times 10^{-11}\ \kg^{-1} \m^3 \s^{-2} = 1/4\pi$
とすれば,$\mathbb{C}$で解いて
$\kg = 18.908488.125\ \X = \exp(18.908488 + 2\pi i \times 0.125)$
$\m = 78.844871.125\ \X$
$\s = 98.363472.125\ \X$
となる.ついでに
$k = 1.3806488 \times 10^{-23} \J\ \K^{-1} = 1$
$\mu_0 = 4\pi \times 10^{-7}\ \N\ \A^{-2} = 1$
とすれば,
$\K = -72.765617.125\ \X$
$\A = -56.280327 \ \X$
となる.また,
$\b = \log 2 = 0.693147 = -0.366513\ \X$
$\B = \log 2^8 = 8 \log 2 = 1.712929\ \X$
$\Ki\B = 2^{10}\ \B = 8.644400\ \X$
$\Mi\B = 2^{20}\ \B = 15.575872\ \X$
$\Gi\B = 2^{30}\ \B = 22.507344\ \X$
などとなる.

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?