ジオイド/geoid
- 重力によって海の表面が形成した球体。
- ジオイドの表面が海面、ジオイド基準の高度は海抜。
- ジオイドの表面はその場所の重力と垂直となる。
重力は、その場の密度にも影響されるので、ジオイドがそんなに滑らかではない。 - goidの差分のを1000倍に大きくすると理解しやすいでしょう。
地球楕円体/Earth ellipsoid
- 地球楕円体は、ジオイドを抽象的的に表現した楕円体。
その楕円体は、赤道の半径xがやや長い、南極-北極の半径zがやや短い。扁平率はf=(x-z)/x. - 日本の測量で使われているITRF94とか、WGS84の一個前のモデルであるGRS80とかは、
WGS84と些細な差があるが基本同じものと考えていいでしょう。(扁平率が少し違うだけ)
世界測地系/World Geodetic System(ここではGPSが使うWGS84だけ集中して説明する)
- WGS84は地球楕円体のうちの一つ。
- GPSが使うので、ドローンも使うし、車のカーナビーも基本これを使う。
- WGS84の長半径は 6,378,137 m、扁平率は 1/298.257223563
- 上記の地球楕円体の図の通り、x,y,zが決められている。
- z:中心点から北極へ、
x:中心点から赤道と本初子午線の交差点へ、
y:xとzと垂直して東経90度へ。
直交座標系表記 vs 地図学?表記/Cartesian vs Cartographic
- 3D地図でプログラムやると、必ず出会うのはCartesian(x, y, z)表記とCartographic(latitude, longitude, height).
- Cartesianでは、世界測地系の図のどおり、地球を楕円として考えて、
z:中心点から北極へ、
x:中心点から赤道と本初子午線の交差点へ、
y:xとzと垂直して東経90度へ
3つのVectorで地理の位置を表す。単位は通常mそのまま。 - Cartographicでは、表示の通り、経度、緯度、対地面高度で地理の位置を表す。
- Cartographicの経度、緯度は、
度数のDegreesでも、
ラジアンのRadians(=Degree*pi/180)でも
どっちてもOKです。
heightは通常mそのまま。 - ここに注意しないといけないのは、ここの地面、つまりheight=0の場所は、
そのCartographicが準ずる地球球体のシステムによって変わります。
その球体がwgs84か、geoidかによってだいぶ変わります。 - 例:wgs84基準で、経度、緯度Cartographic(0, 0)の場合(赤道と本初子午線の交差点)、
Cartesianのxは地球半径、y=z=0である。
- 例:wgs84基準で、経度、緯度Cartographic(0, 90)の場合(北極)、
Cartesianのzは地球半径、y=x=0である。
- 例:wgs84基準で、経度、緯度Cartographic(90, 0)の場合(インド洋)、
Cartesianのyは地球半径、z=x=0である。