15
11

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

PyTorch で GPU を使う

Posted at

説明

基本的に .cuda() を使う。

  1. モデル(net)
  2. 入力(inputs)
  3. 正解データ(labels)
    のそれぞれに対して作用させること。
def try_gpu(e):
    if torch.cuda.is_available():
        return e.cuda()
    return e

みたいなメソッドを定義しておいて、

import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(28 * 28, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 28 * 28)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

net = Net()
net = try_gpu(net)

とか

epochs = 100

for epoch in range(epochs):
    running_loss = 0.0
    for i, (inputs, labels) in enumerate(trainloader, 0):
        # zero the parameter gradients
        optimizer.zero_grad()
        inputs = try_gpu(inputs)
        labels = try_gpu(labels)

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 100 == 99:
            print('[{:d}, {:5d}] loss: {:.3f}'
                    .format(epoch + 1, i + 1, running_loss / 100))
            running_loss = 0.0

print('Finished Training')

とかすると、自動的に CPU と GPU を切り替えられて良いかもしれない。
理想は、.cuda() を明示的にコードの中に入れないことなのだが、もっとよい方法があれば教えてください。

参考

[PyTorchでMNIST]
(https://qiita.com/fukuit/items/215ef75113d97560e599)

15
11
3

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
15
11

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?