0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

「実数列の和」の極限 = 「実数列の極限」の和

Last updated at Posted at 2019-06-05

#命題
実数列$\{a_n \}, \{b_n \}$の極限がそれぞれ$\lim_{n \to \infty} a_n=\alpha,\lim_{n \to \infty} b_n=\beta$ならば、

\begin{align}
\lim_{n \to \infty} (a_n + b_n) = \alpha + \beta
\end{align}

である。

#証明
$\{a_n \}, \{b_n \}$の極限がそれぞれ$\alpha, \beta$であることから、${}^\forall \epsilon/2 > 0$に対して以下の命題が成り立つ。

{}^\exists N_1 \in \mathbb{N}, {}^\forall n > N_1, |a_n - \alpha | < \epsilon/2 \\
{}^\exists N_2 \in \mathbb{N}, {}^\forall n > N_2, |b_n - \beta | < \epsilon/2

ここで、$N = \max \{ N_1, N_2\}$とすると、上記の命題と三角不等式により、${}^\forall n > N$に対して以下の命題が成り立つ。

 |(a_n - \alpha) + (b_n - \beta)| \leq |a_n - \alpha| + | b_n - \beta| < \epsilon/2 + \epsilon/2 = \epsilon

すなわち、

{}^\forall n > N, |(a_n + b_n) - (\alpha + \beta)| < \epsilon

が成り立つ。以上のことをまとめると以下の命題が成り立つということが示された。

{}^\forall \epsilon > 0,{}^\exists N \in \mathbb{N}, {}^\forall n > N, |(a_n + b_n) - (\alpha + \beta)| < \epsilon 

つまり、$\lim_{n \to \infty} a_n=\alpha, \lim_{n \to \infty} b_n=\beta$ならば、

\begin{align}
\lim_{n \to \infty} (a_n + b_n) = \alpha + \beta
\end{align}

である。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?