1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

MacbookにYOLO v3を入れて動かしてみる

Posted at

参考にしたウェブページ

1. 環境構築

資源取得(git clone)

Terminal
electron@diynoMacBook-Pro ~ % cd Desktop                                   
electron@diynoMacBook-Pro Desktop % git clone https://github.com/pjreddie/darknet

ディレクトリ構成の確認

Terminal
electron@diynoMacBook-Pro Desktop % ls darknet
LICENSE		LICENSE.gen	LICENSE.meta	LICENSE.v1	README.md	data		include		scripts
LICENSE.fuck	LICENSE.gpl	LICENSE.mit	Makefile	cfg		examples	python		src
electron@diynoMacBook-Pro Desktop % 
electron@diynoMacBook-Pro Desktop % ls | grep darknet
darknet
electron@diynoMacBook-Pro Desktop % ls darknet/data
9k.labels			coco9k.map			goal.txt			inet9k.map			person.jpg
9k.names			dog.jpg				horses.jpg			kite.jpg			scream.jpg
9k.tree				eagle.jpg			imagenet.labels.list		labels				voc.names
coco.names			giraffe.jpg			imagenet.shortnames.list	openimages.names
electron@diynoMacBook-Pro Desktop % 

make実行

Terminal
electron@diynoMacBook-Pro Desktop % cd darknet
electron@diynoMacBook-Pro darknet % make
gcc -Iinclude/ -Isrc/ -Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC -Ofast obj/captcha.o obj/lsd.o obj/super.o obj/art.o obj/tag.o obj/cifar.o obj/go.o obj/rnn.o obj/segmenter.o obj/regressor.o obj/classifier.o obj/coco.o obj/yolo.o obj/detector.o obj/nightmare.o obj/instance-segmenter.o obj/darknet.o libdarknet.a -o darknet -lm -pthread  libdarknet.a
electron@diynoMacBook-Pro darknet % 

学習済みの重みファイルを取得(wget)

Terminal
electron@diynoMacBook-Pro darknet % wget https://pjreddie.com/media/files/yolov3.weights
--2021-07-12 16:29:23--  https://pjreddie.com/media/files/yolov3.weights
pjreddie.com (pjreddie.com) をDNSに問いあわせています... 
HTTP による接続要求を送信しました、応答を待っています... 200 OK
長さ: 248007048 (237M) [application/octet-stream]
`yolov3.weights' に保存中

yolov3.weights                                   100%[========================================================================================================>] 236.52M  11.5MB/s 時間 29s      

2021-07-12 16:29:54 (8.07 MB/s) - `yolov3.weights' へ保存完了 [248007048/248007048]

electron@diynoMacBook-Pro darknet % 

以上で、環境構築は終わりです:point_up:

2. 画像の物体検出 & 矩形抽出を試してみる

では、早速YOLO v3を使ってみたいと思います。

画像データ: dataディレクトリ直下のサンプル画像「dog.jpg」

( 扱う画像ファイル )

スクリーンショット 2021-07-12 17.21.55.png

( YOLO v3の出力ファイル )

スクリーンショット 2021-07-12 17.18.29.png

( 実行画面 )
Terminal
electron@diynoMacBook-Pro darknet % ./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   608 x 608 x   3   ->   608 x 608 x  32  0.639 BFLOPs
    1 conv     64  3 x 3 / 2   608 x 608 x  32   ->   304 x 304 x  64  3.407 BFLOPs
    2 conv     32  1 x 1 / 1   304 x 304 x  64   ->   304 x 304 x  32  0.379 BFLOPs
    3 conv     64  3 x 3 / 1   304 x 304 x  32   ->   304 x 304 x  64  3.407 BFLOPs
    4 res    1                 304 x 304 x  64   ->   304 x 304 x  64
    5 conv    128  3 x 3 / 2   304 x 304 x  64   ->   152 x 152 x 128  3.407 BFLOPs
    6 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64  0.379 BFLOPs
    7 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128  3.407 BFLOPs
    
    ( 長いので出力結果を省略 )
    
      104 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
  105 conv    255  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 255  0.754 BFLOPs
  106 yolo
Loading weights from yolov3.weights...Done!
data/dog.jpg: Predicted in 18.619947 seconds.
bicycle: 99%
truck: 92%
dog: 100%
electron@diynoMacBook-Pro darknet  %

画像データ: dataディレクトリ直下のサンプル画像「kite.jpg」

( 扱う画像ファイル )

スクリーンショット 2021-07-12 17.21.04.png

( YOLO v3の出力ファイル )

スクリーンショット 2021-07-12 17.23.55.png

( 実行画面 )
Terminal
electron@diynoMacBook-Pro darknet % ./darknet detect cfg/yolov3.cfg yolov3.weights data/kite.jpg
layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   608 x 608 x   3   ->   608 x 608 x  32  0.639 BFLOPs
    1 conv     64  3 x 3 / 2   608 x 608 x  32   ->   304 x 304 x  64  3.407 BFLOPs
    
    ( 長いので出力結果を省略 )
    
  105 conv    255  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 255  0.754 BFLOPs
  106 yolo
Loading weights from yolov3.weights...Done!
data/kite.jpg: Predicted in 19.940331 seconds.
kite: 99%
kite: 84%
kite: 80%
kite: 73%
person: 95%
person: 91%
person: 88%
person: 85%
person: 100%
person: 52%
person: 100%
person: 97%
person: 96%

electron@diynoMacBook-Pro darknet  %
1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?