0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

数理計画(定式化③)

Last updated at Posted at 2021-09-07

制約条件の定式化で参考になった手法を記載します。

#2値
説明変数に2値(0:なし、1:あり)を使用ケースがありますが、その際に使用するテクニック

##選択

説明変数
  x[j] (j:1~n)
  x[j] ∈{0,1}

どちらか一方だけ必ず
   x[j1] + x[j2]  = 1

少なくとも一方
   x[j1] + x[j2]  ≧ 1

一方を優先
   x[j1] ≧ x[j2]

応用が利きそうです。

##条件分岐

説明変数
  y[j] (j:1~n)
  0≦y[j]≦R
  x[j] (j:1~n)
  x[j] ∈{0,1}

   if y[j] == 0
     価値 = 0
   else
     価値 = 100

   x[j] = 0 → 価値なし
   x[j] = 1 → 価値あり

   価値 = 100 × x[j]
   y[j] ≦ R × x[j]   :価値がない場合、y[j] = 0
  0≦y[j]≦R

##制約条件の緩和

説明変数
  y[j] (j:1~n)
  0≦y[j]≦R

  A[j] × y[j] ≦ C[j]
  B[j] × y[j] ≦ C[j]

上記の制約条件があり片方だけ満足すればいい場合
  x[A] Aの制約が有効・無効
  X[B] Bの制約が有効・無効
  x[A][B] ∈{0,1}  0:無効 1:有効
   
   X[A] + X[B] = 1
  A[j] × y[j] ≦ C[j] × Big-M(1 - x[A]) 
  B[j] × y[j] ≦ C[j] × Big-M(1 - x[B]) 
   
Big-M 制約にならない大きな数字
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?