0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

電磁気の微分積分

Posted at

微分公式

  • $y = x^n$ のとき
    $\frac{dy}{dx} = n x^{n-1}$

  • $y = x^{-n}$ のとき
    $\frac{dy}{dx} = - n x^{-n-1} = - \frac{n}{x^{n+1}}$

  • $y = \ln x$ のとき
    $y' = \frac{1}{x}$

  • $y = x + \sqrt{a^2 + x^2}$ のとき
    $y' = \frac{1}{\sqrt{a^2 + x^2}}$


  • $y = \sin(ax)$ → $y' = a \cos(ax)$
  • $y = \cos(ax)$ → $y' = - a \sin(ax)$
  • $y = \tan x$ → $y' = \sec^2 x$
  • $y = \cot x$ → $y' = - \csc^2 x$
  • $y = \sec x$ → $y' = \tan x \sec x$
  • $y = \csc x$ → $y' = - \cot x \csc x$

  • $y = \sinh^{-1} x$ → $y' = \frac{1}{\sqrt{x^2 + 1}}$

  • $y = \cosh^{-1} x$ → $y' = \frac{1}{\sqrt{x^2 - 1}}$

  • $y = \tanh^{-1} x$ → $y' = \frac{1}{1 - x^2}$

  • $y = \sin^{-1} x$ → $y' = \frac{1}{\sqrt{1 - x^2}}$

  • $y = \cos^{-1} x$ → $y' = -\frac{1}{\sqrt{1 - x^2}}$

  • $y = \tan^{-1} x$ → $y' = \frac{1}{1 + x^2}$

  • $y = \sec^{-1} x$ → $y' = \frac{1}{x \sqrt{x^2 - 1}}$

  • $y = \csc^{-1} x$ → $y' = -\frac{1}{x \sqrt{x^2 - 1}}$


積分公式

  • $\int x^m dx = \frac{1}{m+1} x^{m+1} \quad (m \neq -1)$

  • $\int x^{-m} dx = -\frac{1}{m-1} x^{-m+1} = \frac{1}{1-m} x^{1-m}$


  • $\int e^{ax} dx = \frac{1}{a} e^{ax}$

  • $\int \ln(ax) dx = x \ln(ax) - x$

  • $\int \frac{1}{x} dx = \ln x$


  • $\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln \big(x + \sqrt{a^2 + x^2}\big)$

👉 この「微分公式・積分公式」は電験数学や電磁気公式で頻出します。特に

  • $\frac{d}{dx} \ln x = 1/x$
  • $\frac{d}{dx} \sin^{-1} x = 1/\sqrt{1-x^2}$
  • $\int \frac{1}{x} dx = \ln x$
  • $\int \frac{1}{\sqrt{a^2+x^2}} dx = \ln(x+\sqrt{a^2+x^2})$

はよく試験問題に直接使われます。


# Program Name: calculus_formulas_demo.py
# Creation Date: 20250823
# Overview: Demonstrate common differentiation and integration formulas with plots
# Usage: Run the script to compute and visualize basic calculus formulas

!pip install numpy matplotlib sympy -q

import numpy as np
import matplotlib.pyplot as plt
import sympy as sp

# --- Symbol definitions ---
x = sp.Symbol('x')
a = sp.Symbol('a', positive=True)

# --- Differentiation examples ---
diff_examples = {
    "d/dx x^n": sp.diff(x**3, x),                 # Example with n=3
    "d/dx ln(x)": sp.diff(sp.log(x), x),
    "d/dx sqrt(a^2 + x^2)": sp.diff(sp.sqrt(a**2 + x**2), x),
    "d/dx sin(x)": sp.diff(sp.sin(x), x),
    "d/dx cos(x)": sp.diff(sp.cos(x), x),
    "d/dx tan(x)": sp.diff(sp.tan(x), x),
    "d/dx arcsin(x)": sp.diff(sp.asin(x), x),
    "d/dx arccos(x)": sp.diff(sp.acos(x), x),
    "d/dx arctan(x)": sp.diff(sp.atan(x), x),
}

print("=== Differentiation Results ===")
for k, v in diff_examples.items():
    print(f"{k} = {v}")

# --- Integration examples ---
int_examples = {
    "∫ x^m dx (m=2)": sp.integrate(x**2, x),
    "∫ e^(2x) dx": sp.integrate(sp.exp(2*x), x),
    "∫ 1/x dx": sp.integrate(1/x, x),
    "∫ dx/sqrt(a^2+x^2)": sp.integrate(1/sp.sqrt(a**2+x**2), x),
}

print("\n=== Integration Results ===")
for k, v in int_examples.items():
    print(f"{k} = {v}")

# --- Plot example: y = ln(x), y = sqrt(a^2 + x^2) ---
X = np.linspace(0.1, 5, 200)
Y1 = np.log(X)
Y2 = np.sqrt(1 + X**2)

plt.plot(X, Y1, label="y = ln(x)")
plt.plot(X, Y2, label="y = sqrt(1 + x^2)")
plt.title("Example Functions")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.grid(True)
plt.show()
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?