0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

熱力学第一法則とマイヤーの関係式

Posted at

✅ 熱力学第一法則とマイヤーの関係式

● 熱力学第一法則(第1法則):

$$
\Delta U = Q - W
$$

● 状態A→B(等圧変化):

  • 吸熱量:$Q_{AB} = nC_P(T_1 - T_0)$
  • 仕事:$W_{AB} = \int_{V_0}^{V_1} P,dV = nR(T_1 - T_0)$
  • よって内部エネルギー変化:

$$
\Delta U = Q - W = n(C_P - R)(T_1 - T_0)
$$


● 状態A→C(等体積変化):

  • 吸熱量 = 内部エネルギー変化:

$$
Q_{AC} = \Delta U = nC_V(T_1 - T_0)
$$

→ 両方から:

$$
n(C_P - R)(T_1 - T_0) = nC_V(T_1 - T_0)
\quad \Rightarrow \quad
C_P = C_V + R
$$

✅ これはマイヤーの関係式


✅微小断熱変化に対する近似

● 熱力学第1法則(微小断熱):

$$
0 = nC_V \Delta T + P \Delta V \tag{①}
$$

● 状態方程式(PV=nRT)差分展開:

$$
(P + \Delta P)(V + \Delta V) = nR(T + \Delta T) \tag{③}
$$

→ テイラー展開と近似により:

$$
\frac{\Delta V}{V} = -\frac{C_V}{R} \cdot \frac{\Delta T}{T}, \quad \gamma = \frac{C_P}{C_V}
$$

最終的に、仕事・熱・状態変数の関係から:

$$
\frac{\Delta P}{P} = -\gamma \frac{\Delta V}{V} \quad \text{(断熱条件)} \tag{⑤}
$$

ポアソンの関係式につながる


✅ ピストンの運動と熱力学結合

  • 力の釣り合い:$P S = Mg$
  • ピストン運動(単振動方程式):

$$
M \frac{d^2x}{dt^2} = -\gamma \frac{Mg}{L}x
$$

→ 周期:

$$
\tau = 2\pi \sqrt{\frac{L}{\gamma g}}
$$


✅ ポアソンの式の導出(積分)

断熱変化の微分式:

$$
\frac{dP}{P} = -\gamma \frac{dV}{V}
\Rightarrow
PV^\gamma = \text{const.}
$$

さらに状態方程式を使えば:

$$
TV^{\gamma - 1} = \text{const.}
$$


# Program Name: thermodynamics_poisson.py
# Creation Date: 20250727
# Overview: Thermodynamics first law, Mayer's relation, adiabatic relations and piston oscillation period.
# Usage: Run to calculate and plot thermodynamic quantities under adiabatic process assumptions.

!pip install numpy matplotlib

import numpy as np
import matplotlib.pyplot as plt

# --- パラメータ定義(Parameters) ---
n = 1.0             # mol数 [mol]
R = 8.314           # 気体定数 [J/mol·K]
Cv = 20.8           # 定積モル比熱(例:1原子分子)[J/mol·K]
Cp = Cv + R         # マイヤーの関係による定圧比熱
gamma = Cp / Cv     # 比熱比 γ

T0 = 300            # 初期温度 [K]
V0 = 0.01           # 初期体積 [m^3]
P0 = n * R * T0 / V0  # 初期圧力 [Pa]

# --- ΔV変化に対する断熱変化 (Adiabatic Process) ---
dV_frac = np.linspace(-0.05, 0.05, 100)         # ΔV/Vの比率
V = V0 * (1 + dV_frac)
P = P0 * (V0 / V) ** gamma                      # PV^γ = const.
T = T0 * (V0 / V) ** (gamma - 1)                # TV^{γ−1} = const.

# --- ピストン単振動の周期計算(Piston Oscillation) ---
M = 1.0        # ピストン質量 [kg]
L = 0.5        # 有効長さ [m]
g = 9.81       # 重力加速度 [m/s^2]

tau = 2 * np.pi * np.sqrt(L / (gamma * g))  # 周期 [s]

# --- プロット(Plotting) ---
plt.figure(figsize=(6, 4))
plt.plot(dV_frac * 100, P / 1e5, label='Pressure [atm]')
plt.plot(dV_frac * 100, T, label='Temperature [K]')
plt.axhline(y=P0/1e5, color='gray', linestyle='--', linewidth=0.7)
plt.axhline(y=T0, color='gray', linestyle='--', linewidth=0.7)
plt.xlabel("ΔV / V [%]")
plt.ylabel("Pressure / Temperature")
plt.title("Adiabatic Response: ΔP and ΔT vs ΔV/V")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()

# --- 結果出力(Results) ---
print(f"Mayer relation check: Cp = {Cp:.2f} J/mol·K, γ = {gamma:.3f}")
print(f"Initial Pressure: {P0/1e5:.2f} atm")
print(f"Piston Oscillation Period τ: {tau:.3f} s")
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?