0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

ファッション最適化(日記)

Posted at

目的関数の定義(Objective Function)

$$
\text{Score} = \frac{\text{Comfort} \times \text{Reaction Weight}}{\text{Price} \times \text{Wear Time}}
$$

🔸 各変数の意味

項目 記号表現 値の例 備考
快適さ $C$ $C \in {10,\ 25,\ 50}$ 小さいほど不快、大きいほど快適
相手の反応重み $R$ $R \in {0,\ 50,\ 100}$ 相手の評価に基づく重み付け
価格 $P$ $P \in [5000,\ 15000]$ 円単位
着用時間 $T$ $T \in [5,\ 30]$ 分単位

目的関数の数式展開

$$
\text{Score}(C, R, P, T) = \frac{C \cdot R}{P \cdot T}
$$

  • 最大化したい: $\text{Score}$
  • 固定・選択パラメータ: $C, R$ はユーザーや相手によって変化(ヒューリスティック or フィードバックにより変動)
  • 設計可能な変数: $P, T$ は比較的自分で調整可能なコストや条件(制約付き)
# -*- coding: utf-8 -*-
# Program Name: objective_function_P1000_T10.py
# 固定された価格と着用時間に基づいてスコアを計算する(快適さと反応の組み合わせ)

import pandas as pd

# --- 固定パラメータ / Fixed parameters ---
P = 1000   # 価格(円) / Price in yen
T = 10     # 着用時間(分) / Wear time in minutes

# --- 可変パラメータ / Comfort & Reaction levels ---
comfort_values = [10, 25, 50]         # 快適さ C
reaction_weights = [0, 50, 100]       # 反応重み R

# --- スコア関数 / Objective function ---
def compute_score(C, R, P, T):
    return (C * R) / (P * T)

# --- 計算 / Compute all combinations ---
results = []
for C in comfort_values:
    for R in reaction_weights:
        score = compute_score(C, R, P, T)
        results.append({
            'Comfort (C)': C,
            'Reaction (R)': R,
            'Price (P)': P,
            'Wear Time (T)': T,
            'Score': round(score, 6)
        })

# --- 結果表示 / Display result table ---
df = pd.DataFrame(results)
df_sorted = df.sort_values(by="Score", ascending=False)

from IPython.display import display
print("Score results (P = 1000 yen, T = 10 min):")
display(df_sorted)

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?