0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

伝達関数

Posted at

✅ 状況設定 / Problem Setup

  • 質量:$m$

  • 入力(外力):$F(t)$

  • 出力(位置):$x(t)$

  • 運動方程式:

    $$
    m \frac{d^2x(t)}{dt^2} = F(t)
    $$

  • 初期条件:

    $$
    x(0) = x_0, \quad \dot{x}(0) = v_0
    $$


✅ ラプラス変換(初期条件含む) / Laplace Transform (with Initial Conditions)

運動方程式のラプラス変換(初期条件あり):

$$
m \left[ s^2 X(s) - s x_0 - v_0 \right] = F(s)
$$

整理して:

$$
X(s) = \underbrace{\frac{1}{m s^2} F(s)}{\text{外力応答 / Input Response}} + \underbrace{\frac{x_0}{s} + \frac{v_0}{s^2}}{\text{初期条件応答 / Initial Condition Response}}
$$


✅ 出力の構造 / Output Formula Summary

$$
X(s) = G(s) \cdot F(s) + X_{\text{init}}(s)
$$

  • 伝達関数(Transfer Function):

    $$
    G(s) = \frac{1}{m s^2}
    $$

  • 初期条件応答(Initial Response):

    $$
    X_{\text{init}}(s) = \frac{x_0}{s} + \frac{v_0}{s^2}
    $$


✅ 時間領域での解 / Time-Domain Solution

入力が定数 $F(t) = mg$ のとき:

$$
x(t) = x_0 + v_0 t + \frac{1}{2} g t^2
\quad \left( g = \frac{F}{m} \right)
$$


✅ 状況設定 / Problem Setup

  • 質量:$m$

  • ばね定数:$k$

  • 外力:$F(t) = 0$

  • 初期条件:

    $$
    x(0) = x_0, \quad \dot{x}(0) = v_0
    $$


✅ 運動方程式 / Equation of Motion

$$
m \frac{d^2x(t)}{dt^2} + k x(t) = 0
$$

両辺を $m$ で割って:

$$
\frac{d^2x(t)}{dt^2} + \omega^2 x(t) = 0
\quad \text{where } \omega = \sqrt{\frac{k}{m}}
$$


✅ ラプラス変換(初期条件あり)/ Laplace Transform

$$
m \left[ s^2 X(s) - s x_0 - v_0 \right] + k X(s) = 0
$$

整理:

$$
X(s) = \frac{m s x_0 + m v_0}{m s^2 + k} = \frac{s x_0 + v_0}{s^2 + \omega^2}
$$


✅ 時間領域解 / Time-Domain Solution

逆ラプラス変換より:

$$
x(t) = x_0 \cos(\omega t) + \frac{v_0}{\omega} \sin(\omega t)
\quad \text{(単振動 / Undamped Oscillation)}
$$


✅ 状況設定 / Problem Setup

  • 回路構成:直列RC回路
  • 入力電圧:$u(t) = E \cdot 1(t)$(ステップ電圧)
  • 出力:コンデンサ電圧 $v_C(t)$

✅ 回路方程式(微分方程式)/ Circuit ODE

キルヒホッフの電圧法則(KVL):

$$
E = v_R(t) + v_C(t) = R \frac{dq(t)}{dt} + \frac{q(t)}{C}
$$

電荷 $q(t) = C v_C(t)$ より:

$$
RC \frac{dv_C(t)}{dt} + v_C(t) = E
$$


✅ ラプラス変換(ゼロ初期条件)/ Laplace Transform

$$
RC \cdot s V_C(s) + V_C(s) = \frac{E}{s}
\quad \Rightarrow \quad
V_C(s) = \frac{E}{s (RC s + 1)}
$$


✅ 伝達関数 / Transfer Function

$$
G(s) = \frac{V_C(s)}{U(s)} = \frac{1}{RC s + 1}
\quad \text{where } U(s) = \frac{E}{s}
$$


✅ 出力応答(時間領域)/ Time Response

$$
v_C(t) = E \left(1 - e^{-t / (RC)} \right)
$$


✅ 特性 / Characteristics

項目
時定数 $\tau = RC$
初期値 $v_C(0) = 0$
定常値 $v_C(\infty) = E$
応答形式 指数関数的立ち上がり(1次遅れ)

✅ 1. 状況設定 / Problem Setup

  • $N(t)$:時刻 $t$ における放射性核種の量(または濃度)
  • $\lambda$:崩壊定数(decay constant)、単位は $[1/\text{s}]$
  • $T_{1/2}$:半減期(half-life)

$$
\lambda = \frac{\ln 2}{T_{1/2}}
$$


✅ 2. 微分方程式(崩壊モデル)/ Differential Equation

$$
\frac{dN(t)}{dt} = -\lambda N(t)
$$


✅ 3. 解(時間領域)/ Solution in Time Domain

$$
N(t) = N_0 e^{-\lambda t}
\quad (\text{初期値 } N(0) = N_0)
$$


✅ 4. ラプラス変換(初期値あり)/ Laplace Transform

$$
\mathcal{L} \left{ \frac{dN}{dt} \right} = s N(s) - N_0
$$

代入して整理:

$$
s N(s) - N_0 = -\lambda N(s)
\quad \Rightarrow \quad
N(s) = \frac{N_0}{s + \lambda}
$$


✅ 5. 伝達関数 / Transfer Function

外部入力(例:核種供給やシステム応答)を $U(s)$、出力を $Y(s)$ としたとき:

$$
\frac{dN}{dt} + \lambda N = u(t)
\Rightarrow
Y(s) = \frac{1}{s + \lambda} U(s)
$$

つまり、1次低域フィルタと同形

$$
G(s) = \frac{1}{s + \lambda}
$$


0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?