# -*- coding: utf-8 -*-
# モジュールのインポート / Import necessary modules
import numpy as np
import pandas as pd
from scipy import stats
import statsmodels.api as sm
import matplotlib.pyplot as plt
# 乱数シード固定 / Set random seed for reproducibility
np.random.seed(42)
# ダミーデータ生成 / Generate dummy purchase behavior data
n = 300 # サンプル数 / Number of samples
# 割引率、スカーシティ表示、送料無料、レビュー数などの要素をランダム生成
# Generate random values for discount rate, scarcity tag, free shipping, review count, etc.
discount = np.random.choice([0, 10, 20, 30], size=n)
scarcity = np.random.choice([0, 1], size=n)
free_shipping = np.random.choice([0, 1], size=n)
reviews = np.random.randint(0, 100, size=n)
income = np.random.normal(500, 100, size=n) # 所得 / Income
age = np.random.randint(18, 65, size=n) # 年齢 / Age
purchase_history = np.random.randint(0, 50, size=n) # 購入履歴 / Purchase history
# 購入確率を計算 / Calculate purchase probability
purchase_prob = 0.05 * discount + 0.1 * scarcity + 0.08 * free_shipping + 0.001 * reviews + 0.0005 * income
purchase_prob = 1 / (1 + np.exp(-purchase_prob)) # シグモイド関数適用 / Apply sigmoid function
purchase = np.random.binomial(1, purchase_prob) # 購入決定(1=購入, 0=非購入) / Simulate purchase decision
# データフレーム作成 / Create DataFrame
df = pd.DataFrame({
'discount': discount,
'scarcity': scarcity,
'free_shipping': free_shipping,
'reviews': reviews,
'income': income,
'age': age,
'purchase_history': purchase_history,
'purchase': purchase
})
# -------------------- 分析パート / Analysis Section --------------------
# 2.6 割引係数の標準誤差 / Standard Error of Discount Coefficient
X = sm.add_constant(df[['discount']]) # 定数項追加 / Add intercept
model = sm.Logit(df['purchase'], X).fit(disp=False) # ロジスティック回帰 / Logistic Regression
coef_se = model.bse['discount'] # 標準誤差取得 / Get standard error
# 2.7 スカーシティ効果のt検定 / t-test for Scarcity Effect
group1 = df[df['scarcity'] == 1]['purchase'] # 期間限定表示あり / With scarcity
group0 = df[df['scarcity'] == 0]['purchase'] # 期間限定表示なし / Without scarcity
t_stat, p_value_ttest = stats.ttest_ind(group1, group0)
# 2.8 複合要素のF検定 / F-test for Multiple Factors
X_full = sm.add_constant(df[['discount', 'scarcity', 'free_shipping', 'reviews']])
model_full = sm.Logit(df['purchase'], X_full).fit(disp=False)
f_p_value = model_full.llr_pvalue # ログ尤度比検定p値 / Log-likelihood ratio test p-value
# 2.9 割引効果のt検定 / t-test for Discount Effect
group_discount = df[df['discount'] > 0]['purchase'] # 割引あり / With discount
group_nodiscount = df[df['discount'] == 0]['purchase'] # 割引なし / Without discount
t_stat_diff, p_value_diff = stats.ttest_ind(group_discount, group_nodiscount)
# 2.10 消費関数の推定 / Estimation of Consumption Function
X_consump = sm.add_constant(df[['income', 'age', 'purchase_history']])
y_consump = df['purchase']
model_consump = sm.Logit(y_consump, X_consump).fit(disp=False)
# -------------------- 結果表示 / Display Results --------------------
print("Sample Data:")
print(df.head())
print("\n2.6 Coefficient Standard Error:", coef_se)
print("2.7 Scarcity Effect p-value:", p_value_ttest)
print("2.8 Multiple Factors F-test p-value:", f_p_value)
print("2.9 Discount Effect p-value:", p_value_diff)
print("\n2.10 Consumption Function Summary:")
print(model_consump.summary())
# -------------------- 可視化 / Visualization --------------------
# Plot 1: Purchase rate by discount level
discount_means = df.groupby('discount')['purchase'].mean()
discount_means.plot(kind='bar')
plt.title('Purchase Rate by Discount Level')
plt.xlabel('Discount (%)')
plt.ylabel('Purchase Rate')
plt.show()
# Plot 2: Purchase rate by scarcity
scarcity_means = df.groupby('scarcity')['purchase'].mean()
scarcity_means.plot(kind='bar')
plt.title('Purchase Rate by Scarcity (0=No, 1=Yes)')
plt.xlabel('Scarcity Shown')
plt.ylabel('Purchase Rate')
plt.show()
# Plot 3: Purchase rate by discount presence
discount_present = df['discount'] > 0
discount_presence_means = df.groupby(discount_present)['purchase'].mean()
discount_presence_means.plot(kind='bar')
plt.title('Purchase Rate by Discount Presence')
plt.xlabel('Discount Offered (False/True)')
plt.ylabel('Purchase Rate')
plt.show()
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.metrics import accuracy_score, roc_auc_score
# Fix random seed
np.random.seed(42)
# Generate dummy data
n = 100
temperature = np.random.uniform(10, 35, n)
sales = 20 + 5 * temperature + np.random.normal(0, 5, n)
df = pd.DataFrame({'temperature': temperature, 'sales': sales})
# ------------------ 線形回帰 / Linear Regression ------------------
lin_reg = LinearRegression()
lin_reg.fit(df[['temperature']], df['sales'])
sales_pred = lin_reg.predict(df[['temperature']])
# 目標売上設定 / Set sales target
sales_target = 150
required_temp = (sales_target - lin_reg.intercept_) / lin_reg.coef_[0]
print(f"[Linear Regression] Estimated temperature to achieve sales of {sales_target}: {required_temp:.2f}°C")
# Plot Linear Regression with sales target line and required temperature
plt.scatter(df['temperature'], df['sales'], label='Actual Sales')
plt.plot(df['temperature'], sales_pred, color='red', label='Linear Regression')
plt.axhline(y=sales_target, color='green', linestyle='--', label=f'Sales Target = {sales_target}')
plt.axvline(x=required_temp, color='blue', linestyle='--', label=f'Estimated Temp = {required_temp:.2f}°C')
plt.title('Ice Cream Sales vs Temperature (Linear Regression)')
plt.xlabel('Temperature (C)')
plt.ylabel('Ice Cream Sales')
plt.legend()
plt.show()
# ------------------ ロジスティック回帰 / Logistic Regression ------------------
df['high_sales'] = (df['sales'] >= sales_target).astype(int)
log_reg = LogisticRegression()
log_reg.fit(df[['temperature']], df['high_sales'])
prob = log_reg.predict_proba(df[['temperature']])[:, 1]
decision_boundary = -log_reg.intercept_[0] / log_reg.coef_[0][0]
print(f"[Logistic Regression] Estimated temperature for 50% high sales probability: {decision_boundary:.2f}°C")
# Plot Logistic Regression with probability threshold line and decision boundary
plt.scatter(df['temperature'], df['high_sales'], label='Actual High Sales (0/1)')
plt.plot(df['temperature'], prob, color='red', label='Predicted Probability')
plt.axhline(y=0.5, color='green', linestyle='--', label='Probability Threshold = 0.5')
plt.axvline(x=decision_boundary, color='blue', linestyle='--', label=f'Estimated Temp = {decision_boundary:.2f}°C')
plt.title('High Sales Probability vs Temperature (Logistic Regression)')
plt.xlabel('Temperature (C)')
plt.ylabel('Probability of High Sales')
plt.legend()
plt.show()
# ライブラリのインポート / Import required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, LogisticRegression
import statsmodels.api as sm
# シード設定 / Set random seed
np.random.seed(42)
# データ生成 / Generate sample data
n = 100
temperature = np.random.uniform(10, 35, n)
sales = 20 + 5 * temperature + np.random.normal(0, 5, n)
df = pd.DataFrame({'temperature': temperature, 'sales': sales})
# 3.4 2次式推定(スマイルカーブ)/ Quadratic Regression
df['temperature_squared'] = df['temperature'] ** 2
X_quad = sm.add_constant(df[['temperature', 'temperature_squared']])
quad_model = sm.OLS(df['sales'], X_quad).fit()
# 線形回帰 / Linear Regression
lin_reg = LinearRegression()
lin_reg.fit(df[['temperature']], df['sales'])
sales_pred = lin_reg.predict(df[['temperature']])
sales_target = 150
required_temp = (sales_target - lin_reg.intercept_) / lin_reg.coef_[0]
# ロジスティック回帰 / Logistic Regression
df['high_sales'] = (df['sales'] >= sales_target).astype(int)
log_reg = LogisticRegression()
log_reg.fit(df[['temperature']], df['high_sales'])
prob = log_reg.predict_proba(df[['temperature']])[:, 1]
decision_boundary = -log_reg.intercept_[0] / log_reg.coef_[0][0]
# プロット:2次式(スマイルカーブ)/ Quadratic Regression Plot
plt.scatter(df['temperature'], df['sales'], label='Actual Sales')
sorted_temp = np.sort(df['temperature'])
quad_pred = quad_model.predict(sm.add_constant(pd.DataFrame({
'temperature': sorted_temp,
'temperature_squared': sorted_temp ** 2
})))
plt.plot(sorted_temp, quad_pred, color='purple', label='Quadratic Fit (Smile Curve)')
plt.title('Quadratic Fit (Smile Curve)')
plt.xlabel('Temperature (C)')
plt.ylabel('Sales')
plt.legend()
plt.show()
# プロット:線形回帰 / Linear Regression Plot
plt.scatter(df['temperature'], df['sales'], label='Actual Sales')
plt.plot(df['temperature'], sales_pred, color='red', label='Linear Regression')
plt.axhline(y=sales_target, color='green', linestyle='--', label=f'Sales Target = {sales_target}')
plt.axvline(x=required_temp, color='blue', linestyle='--', label=f'Estimated Temp = {required_temp:.2f}C')
plt.title('Linear Regression with Sales Target')
plt.xlabel('Temperature (C)')
plt.ylabel('Sales')
plt.legend()
plt.show()
# プロット:ロジスティック回帰 / Logistic Regression Plot
plt.scatter(df['temperature'], df['high_sales'], label='Actual High Sales (0/1)')
plt.plot(df['temperature'], prob, color='red', label='Predicted Probability')
plt.axhline(y=0.5, color='green', linestyle='--', label='Probability Threshold = 0.5')
plt.axvline(x=decision_boundary, color='blue', linestyle='--', label=f'Estimated Temp = {decision_boundary:.2f}C')
plt.title('Logistic Regression with Probability Threshold')
plt.xlabel('Temperature (C)')
plt.ylabel('Probability of High Sales')
plt.legend()
plt.show()
# 結果サマリー / Summary of results
result_summary = {
"Quadratic Model Summary": quad_model.summary().as_text(),
"Linear Regression Estimated Temperature": float(required_temp),
"Logistic Regression Decision Boundary Temperature": float(decision_boundary)
}
result_summary
# ライブラリのインポート / Import required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller, acf, pacf, grangercausalitytests
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.stats.stattools import durbin_watson
import warnings
warnings.filterwarnings("ignore")
# シード設定 / Set random seed
np.random.seed(42)
# --- サンプル時系列データ生成 / Generate Sample Time Series Data ---
n = 120 # 月次データ10年分 / 10 years monthly data
time_index = pd.date_range(start='2010-01', periods=n, freq='M')
trend = np.linspace(50, 100, n) # トレンド / Trend component
seasonal = 10 * np.sin(2 * np.pi * time_index.month / 12) # 季節性 / Seasonal component
noise = np.random.normal(0, 2, n) # ノイズ / Noise component
y = trend + seasonal + noise
# データフレーム作成 / Create DataFrame
df = pd.DataFrame({'date': time_index, 'value': y}).set_index('date')
# --- 5.4 季節調整(1年差分)/ Seasonal Adjustment by Differencing ---
df['diff'] = df['value'].diff(12)
# --- 5.6 ARモデル推定 / AR(1) Model ---
model_ar = ARIMA(df['value'], order=(1, 0, 0)).fit()
ar_residuals = model_ar.resid
dw_stat = durbin_watson(ar_residuals) # Durbin-Watson Statistic
# --- 5.7 ARIMA(1,1,1)モデル推定 / ARIMA(1,1,1) Model ---
model_arima = ARIMA(df['value'], order=(1, 1, 1)).fit()
forecast = model_arima.forecast(12)
# --- 5.12 グレンジャー因果検定 / Granger Causality Test ---
df['lagged_value'] = df['value'].shift(1)
df_gc = df[['value', 'lagged_value']].dropna()
gc_test_result = grangercausalitytests(df_gc, maxlag=2, verbose=False)
gc_pvalues = {lag: result[0]['ssr_ftest'][1] for lag, result in gc_test_result.items()}
# --- プロット:オリジナルと季節調整 / Plot Original and Seasonal Differenced Series ---
df[['value', 'diff']].plot(title="Original and Seasonal Differenced Series")
plt.show()
# --- プロット:ARIMA予測 / Plot ARIMA Forecast ---
plt.plot(df['value'], label='Observed')
plt.plot(pd.date_range(df.index[-1], periods=12, freq='M'), forecast, label='ARIMA Forecast', color='red')
plt.title('ARIMA(1,1,1) Forecast')
plt.legend()
plt.show()
# --- 結果サマリー / Summary of Results ---
summary = {
"Durbin-Watson Statistic": dw_stat,
"AR(1) Model Summary": model_ar.summary().as_text(),
"ARIMA(1,1,1) Model Summary": model_arima.summary().as_text(),
"Granger Causality Test p-values (lag 1 and 2)": gc_pvalues
}
summary