0
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

[003] RC回路のステップ応答~畳み込み~

Last updated at Posted at 2023-09-26

tex記法とMarkdown記法の練習を兼ねて,図2のRC回路のステップ応答を求めてみる.

コンデンサ$C$に流れる電流$i(t)$は,
$$i(t)=C\frac{dv_o(t)}{dt}$$

と表される.
この式を使って,キルヒホッフの電圧則を表すと,

$$v_i(t)=RC\frac{dv_o(t)}{dt}+v_o(t)$$

$\mathcal{L}[v_i(t)]=V_i(s),\mathcal{L}[v_o(t)]=V_o(s)$として,両辺をラプラス変換すると,

$$V_i(s)=RC[sV_o(s)-v_o(0)]+V_o(s)$$

$v_o(0)=0$として,伝達関数$G(s)=V_o(s)/V_i(s)$を求めると,

$$G(s)=\frac{V_o(s)}{V_i(s)}=\frac{\frac{1}{RC}}{s+\frac{1}{RC}}$$

デルタ関数$\delta (t)$のラプラス変換は,
$$\mathcal{L}[\delta (t)]=1$$

$v_i(t)=\delta (t)$をRC回路へ入力したとき,$V_i(s)=\mathcal{L}[v_i (t)]=1$である.

出力電圧のラプラス変換は,
$$V_o(s)=G(s)V_i(s)$$

と表されるので,RC回路のインパルス応答$g(t)$は,

\begin{align}
V_o(s)&=G(s)\\
v_o(t)&=\mathcal{L}^{-1}[V_o(s)]=\mathcal{L}^{-1}[G(s)]=g(t)\\
\therefore g(t)&=\mathcal{L}^{-1}[G(s)]
\end{align}

インパルス応答$g(t)$は伝達関数$G(s)$より.
$$g(t)=\mathcal{L}^{-1}[G(s)]=\frac{1}{RC}e^{-\frac{1}{RC}t}$$

と求められる.

任意の入力における応答はインパルス応答$g(t)$と入力との畳み込みで表すことができる.
RC回路にステップ関数$Eu(t)$を入力したときのステップ応答$v_o(t)$は,

\begin{align}
v_o(t)&=\int^t_0 g(\tau)Eu(t-\tau)d\tau\\
&=E\int^t_0\frac{1}{RC}e^{-\frac{1}{RC}\tau}d\tau\\
&=\frac{E}{RC}\left[ -RC e^{-\frac{1}{RC}\tau}\right]^t_0\\
&=\frac{E}{RC}\left[ -RC e^{-\frac{1}{RC}t}+RC\right]\\
&=E\left(1-e^{-\frac{1}{RC}t}\right)
\end{align}

出力電流$i(t)$は出力電圧$v_o(t)$の時間微分より,
$$i(t)=C\frac{dv_o}{dt}=\frac{E}{R}e^{-\frac{1}{RC}t}$$

電圧$v_o(t)$と電流$i(t)$を再掲すると,

\begin{align}
v_o(t)&=E\left(1-e^{-\frac{1}{RC}t}\right)\\
i(t)&=\frac{E}{R}e^{-\frac{1}{RC}t} 
\end{align}
0
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?