0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

アポロニウスの円

Last updated at Posted at 2019-06-08

軌跡の十分性の証明を省略しないシリーズの第2弾です。軌跡が円になる場合です。

問題

2点$\text{A}(-3,,0)$,$\text{B}(1,,0)$からの距離の比が$3:1$である点$\text{P}$の軌跡を求めます。

解答

$\text{P}(x,y)$とおくと,$\text{AP}:\text{BP}=3:1$より,$$\text{AP}=3\text{BP}$$$$\therefore \text{AP}^2=9\text{BP}^2$$$$\therefore (x+3)^2+(y-0)^2=9(x-1)^2+9(y-0)^2$$$$\therefore x^2+6x+9+y^2=9x^2-18x+9+9y^2$$$$\therefore 8x^2+8y^2-24x=0$$$$\therefore x^2-3x+y^2=0$$$$\therefore \left(x-\frac32\right)^2+y^2=\frac94$$よって,点$\text{P}$は中心$\left(\frac32,,0\right)$,半径$\frac32$の円周上にあることがわかりました。しかし、円周上全体を動くかどうかはわかりません。
そこで,点$\text{P}(a,b)$が円$x^2-3x+y^2=0$上の点であるとすると,$$a^2-3a+b^2=0\cdots\text{①}$$が成り立ちます。このとき,
$$\begin{aligned}[t]
\text{AP}^2-9\text{BP}^2
&=(a+3)^2+b^2-9(a-1)^2-9b^2\
&=a^2+6a+9-9a^2+18a-9-9b^2\
&=-8a^2-8b^2+24a\
&=-8(a^2-3a+b^2)\
&=0\quad(\therefore\text{①})
\end{aligned}$$$$\therefore \text{AP}^2=9\text{BP}^2$$$$\therefore \text{AP}=3\text{BP}$$$$\therefore \text{AP}:\text{BP}=3:1$$
となるので、円$x^2-3x+y^2=0$上どこに点$\text{P}$をとっても$\text{AP}:\text{BP}=3:1$となります。
以上より、点$\text{P}$の軌跡は中心$\left(\frac32,,0\right)$,半径$\frac32$の円全体を表します。除かれる点などはありません。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?