3
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

DynamoDBの並列スキャンをboto3で試してみた

Last updated at Posted at 2022-03-04

はじめに

DynamoDBでデータを取得する際scanを使用するとテーブルの全てのレコードに対して逐次処理をしていきます。
そのため基本的にはscanではなく、queryを使うというのがベストプラクティスです。
しかし、どうしてもスキャンを使いたいときに効率よくスキャンできそうな、並列スキャンについてboto3で試してみた備忘録です。

並列スキャンについてのドキュメントはこちらです。

環境

確認に使用した環境は以下です。

  • python: v3.9.7
  • boto3: v1.21.11

検証

検証用データの準備

今回は下記のようなテーブルに対して10,000件のデータを入れました。
その結果、テーブルのサイズは300KBになりました。

テーブル名: parallel-scan-sample

項目名 データ型
パーティションキー productId number
name string
rate number
table size

普通のスキャン

コード

まずは単純に全件取得のスキャンしてみます。全件取得して経過時間とレスポンスを表示しているだけです。

scan.py
import boto3
import time

dynamodb = boto3.resource('dynamodb')

table = dynamodb.Table('parallel-scan-sample')

start_time = time.time()
response = table.scan(
    ReturnConsumedCapacity='TOTAL' #キャパシティユニットを表示するため
)
elapsed_time = time.time() - start_time

print('ElapsedTime:', elapsed_time)
print('ConsumedCapacity:', response['ConsumedCapacity'])

出力はこんな感じです。

ElapsedTime: 7.379684925079346
ConsumedCapacity: {'TableName': 'parallel-scan-sample', 'CapacityUnits': 36.5}

結果

実行ごとに処理時間に誤差があるので5回ほどためしてその平均を出しました。

消費キャパシティユニット: 36.5

1回目: 7.379684925079346秒
2回目: 6.913349151611328秒
3回目: 7.883518934249878秒
4回目: 7.087058305740356秒
5回目: 7.384438037872314秒

平均: 7.329609870910644秒

並列スキャン

次に並列スキャンを試してみます。
今回は分割するセグメントを4にしています。
ドキュメントには基準となるような記載はなく、いくつがいいのか試す必要があるとだけありました。。。

Segment および TotalSegments の値は、個々の Scan リクエストに適用されるため、いつでも異なる値を使用できます。
アプリケーションが最高のパフォーマンスを達成するまで、これらの値および使用するワーカーの数を試さなければならない場合があります。

コード

実際に試してみたコードは下記になります。

import boto3
import time
from concurrent import futures

def parallel_scan(segment):
    response = table.scan(
        TotalSegments=4,
        Segment=segment,
        ReturnConsumedCapacity='TOTAL' #キャパシティユニットを表示するため
    )

    return {
        'Count': response['Count'],
        'ScannedCount': response['ScannedCount'],
        'ConsumedCapacity': response['ConsumedCapacity']
    }

dynamodb = boto3.resource('dynamodb')

table = dynamodb.Table('parallel-scan-sample')

futures_list = []

start_time = time.time()
with futures.ThreadPoolExecutor() as executor:
    for segment in range(0, 4):
        future = executor.submit(parallel_scan, segment)
        futures_list.append(future)

elapsed_time = time.time() - start_time

print('ElapsedTime:', elapsed_time)
print('Segment0:', futures_list[0].result())
print('Segment1:', futures_list[1].result())
print('Segment2:', futures_list[2].result())
print('Segment3:', futures_list[3].result())

出力はこんな感じです。

ElapsedTime: 3.1862332820892334
Segment0: {'Count': 2414, 'ScannedCount': 2414, 'ConsumedCapacity': {'TableName': 'parallel-scan-sample', 'CapacityUnits': 9.0}}
Segment1: {'Count': 2532, 'ScannedCount': 2532, 'ConsumedCapacity': {'TableName': 'parallel-scan-sample', 'CapacityUnits': 9.5}}
Segment2: {'Count': 2516, 'ScannedCount': 2516, 'ConsumedCapacity': {'TableName': 'parallel-scan-sample', 'CapacityUnits': 9.5}}
Segment3: {'Count': 2538, 'ScannedCount': 2538, 'ConsumedCapacity': {'TableName': 'parallel-scan-sample', 'CapacityUnits': 9.5}}

結果

並列スキャンも実行ごとに誤差があるので5回の平均を出してます。
消費した合計のキャパシティユニットはすべての実行で同じでした。

合計の消費キャパシティユニット: 37.5

1回目: 3.18623328208923秒
2回目: 3.18821120262146秒
3回目: 3.18266010284423秒
4回目: 3.24029588699340秒
5回目: 3.18203210830688秒

平均: 3.19588651657104秒

まとめ

それぞれ、5回試してみた処理時間の平均を比べてみると

普通のスキャン(平均) 並列スキャン(平均)
7.329609870910644秒 3.19588651657104秒

となり、今回の検証では並列スキャンを使うと処理時間が短縮されることがわかりました。
テーブルのサイズが300KBと非常に小さい中での検証でしたが、テーブルのサイズが大きく集計等でどうしてもスキャンが必要なときは選択肢になるのかなと感じました。
並列スキャンの場合いくつのセグメントで分割すべきかを考えるのが大変な気がしますが。。。

ちなみに公式のベストプラクティスによると
並列スキャンは有益ですが、プロビジョニングされたスループットに大量のリクエストが発生する可能性があります
とのことなので注意が必要そうです。
また、以下のケースでは正しい選択肢となるとのことです。

- テーブルのサイズが 20 GB 以上である。
- テーブルのプロビジョニングされた読み込みスループットが完全に使用されていない。
- シーケンシャル Scan オペレーションが遅すぎる。
3
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?