#python
##最大公約数
Q: 51と15の最大公約数は?
- 51÷15 = 3 あまり6
- 15÷6 = 2あまり3
- 6÷3 = 2あまり0
A: 3!!
def GCD(m,n):
if n==0:
return m
return GCD(n,m%n)
print(GCD(51,15))
#include <bits/stdc++.h>
using namespace std;
int GCD(int m, int n){
if (n==0) return m;
return GCD(n,m%n);
}
int main() {
cout << GCD(51,15);
}
##フィボナッチ数列
出力
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 1836311903, 2971215073, 4807526976, 7778742049]
fibo = [None]*50
fibo[0]=0
fibo[1]=1
for i in range(2,50):
fibo[i]=fibo[i-1]+fibo[i-2]
print(fibo)
#include <bits/stdc++.h>
using namespace std;
int main() {
std::vector<long long> fibo(50);
fibo[0] = 0, fibo[1]=1;
for (int i=2;i<50;++i){
fibo[i]=fibo[i-1]+fibo[i-2];
}
for (int i=0;i<50;++i) cout << fibo[i] << "," << " ";
}
メモ化すると↓
memo = [-1]*50
memo[0] = 0
memo[1] = 1
def fibo(n):
if n==0:
return 0
elif n==1:
return 1
if memo[n] != -1:
return memo[n]
memo[n] = fibo(n-1)+fibo(n-2)
return memo[n]
fibo(49)
print(memo)
#include <bits/stdc++.h>
using namespace std;
std::vector<long long> memo;
long long fibo(int n){
if (n==0) return 0;
else if (n==1) return 1;
if (memo[n] != -1) return memo[n];
return memo[n] = fibo(n-1)+fibo(n-2);
}
int main() {
memo.assign(50,-1);
fibo(49);
for (int n=2;n<50;++n){
cout << memo[n] << ","<< " ";
}
}