0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

モーターの動きをシミュレーション

Last updated at Posted at 2019-12-21

電圧Eを入力する
image.pngモータの等価回路
Δt秒間のRL回路のステップ応答になる

E = Ri(t) + L \dfrac{di(t)}{dt} \\
\dfrac{1}{i(t) - \dfrac{E}{R}} \cdot di = -\dfrac{R}{L} \cdot dt \\
\displaystyle\int \dfrac{1}{i(t) - \dfrac{E}{R}} \, di = -\int \dfrac{R}{L} \, dt \\
\log_e \left| i(t) - \dfrac{E}{R} \right|=\dfrac{R}{L}t+A

絶対値の中は$i(t) - \dfrac{E}{R}$ですが、i(t)は回路に流れる電流で、$\dfrac{E}{R}$はコイルLが短絡された状態(つまり、定常状態)での電流なので、$i(t) \leqq \dfrac{E}{R}$となり、絶対値の中は常にゼロ以下になります。よって、絶対値は外せる。

\log_e \left( i(t) - \dfrac{E}{R} \right)=\dfrac{R}{L}t+A \\
\dfrac{E}{R} - i(t) = e^{-\frac{R}{L} t + A} \\
\dfrac{E}{R} - i(t) = e^A \cdot e^{-\frac{R}{L} t} \\

t=0で初期電流i0とすると、

e^A = \dfrac{E}{R}-i_0 \\
\dfrac{E}{R} - i(t) = (\dfrac{E}{R}-i_0) \cdot e^{-\frac{R}{L} t} \\
-i(t) = -\dfrac{E}{R} + (\dfrac{E}{R}-i_0) \cdot e^{-\frac{R}{L} t} \\
i(t) = \dfrac{E}{R} - (\dfrac{E}{R}-i_0) \cdot e^{-\frac{R}{L} t}

Δt秒後の電流は
$$i_{t+1}=\dfrac{E}{R}-(\dfrac{E}{R}-i_t) \cdot e^{-\frac{R}{L} Δt}$$

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?