雑な覚書。

scikit-learnの基礎

"datasets"オブジェクトの作成、dataおよび目的変数配列の生成

from sklearn import datasets
import numpy as np

iris = datasets.load_iris()
X = iris.data[:,[2,3]]
y = iris.target

機械学習のテスト用データとして有名なirisについては、専用のロード関数が用意されている。

トレーニング用とテスト用のデータに分割

from sklearn.cross_validation import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

データの正規化(スケーリング)

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std  = sc.transform(X_test)

パーセプトロンによる学習

from sklearn.linear_model import Perceptron

ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0, shuffle=True)
ppn.fit(X_train_std, y_train)

y_pred = ppn.predict(X_test_std)
print('Misclassified samples: %d' %(y_test != y_pred).sum())
   Misclassified samples: 4


   W:\anaconda\lib\site-packages\sklearn\linear_model\stochastic_gradient.py:117: DeprecationWarning: n_iter parameter is deprecated in 0.19 and will be removed in 0.21. Use max_iter and tol instead.
     DeprecationWarning)

エポック数を指定するn_iterはdeprecatedで、かわりにmax_iterおよびtolを使用せよとのこと。help(Perceptron)で確認しておく。

help(Perceptron)
   Help on class Perceptron in module sklearn.linear_model.perceptron:

   class Perceptron(sklearn.linear_model.stochastic_gradient.BaseSGDClassifier)
    |  Perceptron
    |  
    |  Read more in the :ref:`User Guide <perceptron>`.
    |  
    |  Parameters
    |  ----------
    |  
    |  penalty : None, 'l2' or 'l1' or 'elasticnet'
    |      The penalty (aka regularization term) to be used. Defaults to None.
    |  
    |  alpha : float
    |      Constant that multiplies the regularization term if regularization is
    |      used. Defaults to 0.0001
    |  
    |  fit_intercept : bool
    |      Whether the intercept should be estimated or not. If False, the
    |      data is assumed to be already centered. Defaults to True.
    |  
    |  max_iter : int, optional
    |      The maximum number of passes over the training data (aka epochs).
    |      It only impacts the behavior in the ``fit`` method, and not the
    |      `partial_fit`.
    |      Defaults to 5. Defaults to 1000 from 0.21, or if tol is not None.
    |  
    |      .. versionadded:: 0.19
    |  
    |  tol : float or None, optional
    |      The stopping criterion. If it is not None, the iterations will stop
    |      when (loss > previous_loss - tol). Defaults to None.
    |      Defaults to 1e-3 from 0.21.
    |  
    |      .. versionadded:: 0.19
    |  
    |  shuffle : bool, optional, default True
    |      Whether or not the training data should be shuffled after each epoch.
    |  
    |  verbose : integer, optional
    |      The verbosity level
    |  
    |  eta0 : double
    |      Constant by which the updates are multiplied. Defaults to 1.
    |  
    |  n_jobs : integer, optional
    |      The number of CPUs to use to do the OVA (One Versus All, for
    |      multi-class problems) computation. -1 means 'all CPUs'. Defaults
    |      to 1.
    |  
    |  random_state : int, RandomState instance or None, optional, default None
    |      The seed of the pseudo random number generator to use when shuffling
    |      the data.  If int, random_state is the seed used by the random number
    |      generator; If RandomState instance, random_state is the random number
    |      generator; If None, the random number generator is the RandomState
    |      instance used by `np.random`.
    |  
    |  class_weight : dict, {class_label: weight} or "balanced" or None, optional
    |      Preset for the class_weight fit parameter.
    |  
    |      Weights associated with classes. If not given, all classes
    |      are supposed to have weight one.
    |  
    |      The "balanced" mode uses the values of y to automatically adjust
    |      weights inversely proportional to class frequencies in the input data
    |      as ``n_samples / (n_classes * np.bincount(y))``
    |  
    |  warm_start : bool, optional
    |      When set to True, reuse the solution of the previous call to fit as
    |      initialization, otherwise, just erase the previous solution.
    |  
    |  n_iter : int, optional
    |      The number of passes over the training data (aka epochs).
    |      Defaults to None. Deprecated, will be removed in 0.21.
    |  
    |      .. versionchanged:: 0.19
    |          Deprecated
    |  
    |  Attributes
    |  ----------
    |  coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,            n_features]
    |      Weights assigned to the features.
    |  
    |  intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
    |      Constants in decision function.
    |  
    |  n_iter_ : int
    |      The actual number of iterations to reach the stopping criterion.
    |      For multiclass fits, it is the maximum over every binary fit.
    |  
    |  Notes
    |  -----
    |  
    |  `Perceptron` and `SGDClassifier` share the same underlying implementation.
    |  In fact, `Perceptron()` is equivalent to `SGDClassifier(loss="perceptron",
    |  eta0=1, learning_rate="constant", penalty=None)`.
    |  
    |  See also
    |  --------
    |  
    |  SGDClassifier
    |  
    |  References
    |  ----------
    |  
    |  https://en.wikipedia.org/wiki/Perceptron and references therein.
    |  
    |  Method resolution order:
    |      Perceptron
    |      sklearn.linear_model.stochastic_gradient.BaseSGDClassifier
    |      abc.NewBase
    |      sklearn.linear_model.stochastic_gradient.BaseSGD
    |      abc.NewBase
    |      sklearn.base.BaseEstimator
    |      sklearn.linear_model.base.SparseCoefMixin
    |      sklearn.linear_model.base.LinearClassifierMixin
    |      sklearn.base.ClassifierMixin
    |      builtins.object
    |  
    |  Methods defined here:
    |  
    |  __init__(self, penalty=None, alpha=0.0001, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, eta0=1.0, n_jobs=1, random_state=0, class_weight=None, warm_start=False, n_iter=None)
    |      Initialize self.  See help(type(self)) for accurate signature.
    |  
    |  ----------------------------------------------------------------------
    |  Data and other attributes defined here:
    |  
    |  __abstractmethods__ = frozenset()
    |  
    |  ----------------------------------------------------------------------
    |  Methods inherited from sklearn.linear_model.stochastic_gradient.BaseSGDClassifier:
    |  
    |  fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None)
    |      Fit linear model with Stochastic Gradient Descent.
    |      
    |      Parameters
    |      ----------
    |      X : {array-like, sparse matrix}, shape (n_samples, n_features)
    |          Training data
    |      
    |      y : numpy array, shape (n_samples,)
    |          Target values
    |      
    |      coef_init : array, shape (n_classes, n_features)
    |          The initial coefficients to warm-start the optimization.
    |      
    |      intercept_init : array, shape (n_classes,)
    |          The initial intercept to warm-start the optimization.
    |      
    |      sample_weight : array-like, shape (n_samples,), optional
    |          Weights applied to individual samples.
    |          If not provided, uniform weights are assumed. These weights will
    |          be multiplied with class_weight (passed through the
    |          constructor) if class_weight is specified
    |      
    |      Returns
    |      -------
    |      self : returns an instance of self.
    |  
    |  partial_fit(self, X, y, classes=None, sample_weight=None)
    |      Fit linear model with Stochastic Gradient Descent.
    |      
    |      Parameters
    |      ----------
    |      X : {array-like, sparse matrix}, shape (n_samples, n_features)
    |          Subset of the training data
    |      
    |      y : numpy array, shape (n_samples,)
    |          Subset of the target values
    |      
    |      classes : array, shape (n_classes,)
    |          Classes across all calls to partial_fit.
    |          Can be obtained by via `np.unique(y_all)`, where y_all is the
    |          target vector of the entire dataset.
    |          This argument is required for the first call to partial_fit
    |          and can be omitted in the subsequent calls.
    |          Note that y doesn't need to contain all labels in `classes`.
    |      
    |      sample_weight : array-like, shape (n_samples,), optional
    |          Weights applied to individual samples.
    |          If not provided, uniform weights are assumed.
    |      
    |      Returns
    |      -------
    |      self : returns an instance of self.
    |  
    |  ----------------------------------------------------------------------
    |  Data descriptors inherited from sklearn.linear_model.stochastic_gradient.BaseSGDClassifier:
    |  
    |  loss_function
    |      DEPRECATED: Attribute loss_function was deprecated in version 0.19 and will be removed in 0.21. Use ``loss_function_`` instead
    |  
    |  ----------------------------------------------------------------------
    |  Data and other attributes inherited from sklearn.linear_model.stochastic_gradient.BaseSGDClassifier:
    |  
    |  loss_functions = {'epsilon_insensitive': (<class 'sklearn.linear_model...
    |  
    |  ----------------------------------------------------------------------
    |  Methods inherited from sklearn.linear_model.stochastic_gradient.BaseSGD:
    |  
    |  set_params(self, *args, **kwargs)
    |      Set the parameters of this estimator.
    |      
    |      The method works on simple estimators as well as on nested objects
    |      (such as pipelines). The latter have parameters of the form
    |      ``<component>__<parameter>`` so that it's possible to update each
    |      component of a nested object.
    |      
    |      Returns
    |      -------
    |      self
    |  
    |  ----------------------------------------------------------------------
    |  Methods inherited from sklearn.base.BaseEstimator:
    |  
    |  __getstate__(self)
    |  
    |  __repr__(self)
    |      Return repr(self).
    |  
    |  __setstate__(self, state)
    |  
    |  get_params(self, deep=True)
    |      Get parameters for this estimator.
    |      
    |      Parameters
    |      ----------
    |      deep : boolean, optional
    |          If True, will return the parameters for this estimator and
    |          contained subobjects that are estimators.
    |      
    |      Returns
    |      -------
    |      params : mapping of string to any
    |          Parameter names mapped to their values.
    |  
    |  ----------------------------------------------------------------------
    |  Data descriptors inherited from sklearn.base.BaseEstimator:
    |  
    |  __dict__
    |      dictionary for instance variables (if defined)
    |  
    |  __weakref__
    |      list of weak references to the object (if defined)
    |  
    |  ----------------------------------------------------------------------
    |  Methods inherited from sklearn.linear_model.base.SparseCoefMixin:
    |  
    |  densify(self)
    |      Convert coefficient matrix to dense array format.
    |      
    |      Converts the ``coef_`` member (back) to a numpy.ndarray. This is the
    |      default format of ``coef_`` and is required for fitting, so calling
    |      this method is only required on models that have previously been
    |      sparsified; otherwise, it is a no-op.
    |      
    |      Returns
    |      -------
    |      self : estimator
    |  
    |  sparsify(self)
    |      Convert coefficient matrix to sparse format.
    |      
    |      Converts the ``coef_`` member to a scipy.sparse matrix, which for
    |      L1-regularized models can be much more memory- and storage-efficient
    |      than the usual numpy.ndarray representation.
    |      
    |      The ``intercept_`` member is not converted.
    |      
    |      Notes
    |      -----
    |      For non-sparse models, i.e. when there are not many zeros in ``coef_``,
    |      this may actually *increase* memory usage, so use this method with
    |      care. A rule of thumb is that the number of zero elements, which can
    |      be computed with ``(coef_ == 0).sum()``, must be more than 50% for this
    |      to provide significant benefits.
    |      
    |      After calling this method, further fitting with the partial_fit
    |      method (if any) will not work until you call densify.
    |      
    |      Returns
    |      -------
    |      self : estimator
    |  
    |  ----------------------------------------------------------------------
    |  Methods inherited from sklearn.linear_model.base.LinearClassifierMixin:
    |  
    |  decision_function(self, X)
    |      Predict confidence scores for samples.
    |      
    |      The confidence score for a sample is the signed distance of that
    |      sample to the hyperplane.
    |      
    |      Parameters
    |      ----------
    |      X : {array-like, sparse matrix}, shape = (n_samples, n_features)
    |          Samples.
    |      
    |      Returns
    |      -------
    |      array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)
    |          Confidence scores per (sample, class) combination. In the binary
    |          case, confidence score for self.classes_[1] where >0 means this
    |          class would be predicted.
    |  
    |  predict(self, X)
    |      Predict class labels for samples in X.
    |      
    |      Parameters
    |      ----------
    |      X : {array-like, sparse matrix}, shape = [n_samples, n_features]
    |          Samples.
    |      
    |      Returns
    |      -------
    |      C : array, shape = [n_samples]
    |          Predicted class label per sample.
    |  
    |  ----------------------------------------------------------------------
    |  Methods inherited from sklearn.base.ClassifierMixin:
    |  
    |  score(self, X, y, sample_weight=None)
    |      Returns the mean accuracy on the given test data and labels.
    |      
    |      In multi-label classification, this is the subset accuracy
    |      which is a harsh metric since you require for each sample that
    |      each label set be correctly predicted.
    |      
    |      Parameters
    |      ----------
    |      X : array-like, shape = (n_samples, n_features)
    |          Test samples.
    |      
    |      y : array-like, shape = (n_samples) or (n_samples, n_outputs)
    |          True labels for X.
    |      
    |      sample_weight : array-like, shape = [n_samples], optional
    |          Sample weights.
    |      
    |      Returns
    |      -------
    |      score : float
    |          Mean accuracy of self.predict(X) wrt. y.

正解率の出力

from sklearn.metrics import accuracy_score

print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
   Accuracy: 0.91
Sign up for free and join this conversation.
Sign Up
If you already have a Qiita account log in.