1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

matplotlibでクリックしたら、そこを通る3次近似式を書く

Last updated at Posted at 2023-01-10

任意の3次近似式を書きたい(そんな人いないだろうけど)

色々な3次近似式の係数を求めたかったので、ちょっと作ってみた。
クリックしたら、点を追加して、追加した点群で近似式を求めて描画。
ついでに一定の幅を持った線も追加。

そのまま捨てるのももったいないので、公開。

%matplotlib widget 

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.widgets as wg

fig = plt.figure(figsize=(20,5))
ax = plt.gca()
ax.set_xlim(-10, 110)
ax.set_ylim(-20, 20)
ax.set_aspect("equal")
plt.grid()

x0 = np.array([])
y0 = np.array([])
pLine0, = plt.plot(x0, y0, "x")
pLine1, = plt.plot([], [], "-")
pLine2, = plt.plot([], [], "-")
pLine3, = plt.plot([], [], "-")
pText1 = plt.text(-9, -17, "")
pText2 = plt.text(-9, -19, "")

x = np.linspace(0, 100, 1000)

def onclick(event):
    global x0, y0
    x0 = np.append(x0, event.xdata)
    y0 = np.append(y0, event.ydata)
    idx = np.argsort(x0)
    x0 = x0[idx]
    y0 = y0[idx]
    pLine0.set_data(x0, y0)
    
    c3, c2, c1, c0 = list(np.polyfit(x0, y0, 3))
    y1 = c3 * x ** 3 + c2 * x**2 + c1 * x + c0
    pLine1.set_data(x, y1)
    
    
    d = 3.3 / 2
    dy1 = 3 * c3 * x ** 2 + 2 * c2 * x + c1
    l = d / np.sqrt(1 + np.power(dy1, 2))

    x2 = x - dy1 * l
    y2 = y1 + l
    
    x3 = x + dy1 * l
    y3 = y1 - l

    pLine2.set_data(x2, y2)
    pLine3.set_data(x3, y3)
    
    # ax.relim()
    # ax.autoscale_view()
    plt.draw()
    pText1.set_text(f'dblclick={event.dblclick}, button={event.button}, x={event.x}, y={event.y}, xdata={event.xdata:.3f}, ydata={event.ydata:.3f}')
    pText2.set_text(f'c3={c3}, c2={c2}, c1={c1}, c0={c0}')
    
        
cid = fig.canvas.mpl_connect('button_press_event', onclick)

動作イメージ

image.png

ほんとは

スケールも自動でしてほしかったけど、面倒だったのでなしで。
あとはredoも。。。

ax.relim()
ax.autoscale_view()
1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?