0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

MobileNetV3 の中間層の出力を見る

Posted at

Open In Colab

import torch
import torchvision
from torchvision import transforms
import requests
from io import BytesIO
from PIL import Image
import numpy as np
from matplotlib import pyplot as plt
import matplotlib as mpl
import pandas as pd
from torchinfo import summary
model = torchvision.models.mobilenet_v3_small(pretrained=True)
image_url = "https://raw.githubusercontent.com/pytorch/hub/master/images/dog.jpg"
r = requests.get(image_url)
original_image = Image.open(BytesIO(r.content))
original_image

output_6_0.png

preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
image_tensor = preprocess(original_image).unsqueeze(0).to("cuda")
summary(model.features, input_data=image_tensor)
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
├─ConvBNActivation: 1-1                  [1, 16, 112, 112]         --
|    └─Conv2d: 2-1                       [1, 16, 112, 112]         432
|    └─BatchNorm2d: 2-2                  [1, 16, 112, 112]         32
|    └─Hardswish: 2-3                    [1, 16, 112, 112]         --
├─InvertedResidual: 1-2                  [1, 16, 56, 56]           --
|    └─Sequential: 2-4                   [1, 16, 56, 56]           --
|    |    └─ConvBNActivation: 3-1        [1, 16, 56, 56]           176
|    |    └─SqueezeExcitation: 3-2       [1, 16, 56, 56]           280
|    |    └─ConvBNActivation: 3-3        [1, 16, 56, 56]           288
├─InvertedResidual: 1-3                  [1, 24, 28, 28]           --
|    └─Sequential: 2-5                   [1, 24, 28, 28]           --
|    |    └─ConvBNActivation: 3-4        [1, 72, 56, 56]           1,296
|    |    └─ConvBNActivation: 3-5        [1, 72, 28, 28]           792
|    |    └─ConvBNActivation: 3-6        [1, 24, 28, 28]           1,776
├─InvertedResidual: 1-4                  [1, 24, 28, 28]           --
|    └─Sequential: 2-6                   [1, 24, 28, 28]           --
|    |    └─ConvBNActivation: 3-7        [1, 88, 28, 28]           2,288
|    |    └─ConvBNActivation: 3-8        [1, 88, 28, 28]           968
|    |    └─ConvBNActivation: 3-9        [1, 24, 28, 28]           2,160
├─InvertedResidual: 1-5                  [1, 40, 14, 14]           --
|    └─Sequential: 2-7                   [1, 40, 14, 14]           --
|    |    └─ConvBNActivation: 3-10       [1, 96, 28, 28]           2,496
|    |    └─ConvBNActivation: 3-11       [1, 96, 14, 14]           2,592
|    |    └─SqueezeExcitation: 3-12      [1, 96, 14, 14]           4,728
|    |    └─ConvBNActivation: 3-13       [1, 40, 14, 14]           3,920
├─InvertedResidual: 1-6                  [1, 40, 14, 14]           --
|    └─Sequential: 2-8                   [1, 40, 14, 14]           --
|    |    └─ConvBNActivation: 3-14       [1, 240, 14, 14]          10,080
|    |    └─ConvBNActivation: 3-15       [1, 240, 14, 14]          6,480
|    |    └─SqueezeExcitation: 3-16      [1, 240, 14, 14]          31,024
|    |    └─ConvBNActivation: 3-17       [1, 40, 14, 14]           9,680
├─InvertedResidual: 1-7                  [1, 40, 14, 14]           --
|    └─Sequential: 2-9                   [1, 40, 14, 14]           --
|    |    └─ConvBNActivation: 3-18       [1, 240, 14, 14]          10,080
|    |    └─ConvBNActivation: 3-19       [1, 240, 14, 14]          6,480
|    |    └─SqueezeExcitation: 3-20      [1, 240, 14, 14]          31,024
|    |    └─ConvBNActivation: 3-21       [1, 40, 14, 14]           9,680
├─InvertedResidual: 1-8                  [1, 48, 14, 14]           --
|    └─Sequential: 2-10                  [1, 48, 14, 14]           --
|    |    └─ConvBNActivation: 3-22       [1, 120, 14, 14]          5,040
|    |    └─ConvBNActivation: 3-23       [1, 120, 14, 14]          3,240
|    |    └─SqueezeExcitation: 3-24      [1, 120, 14, 14]          7,832
|    |    └─ConvBNActivation: 3-25       [1, 48, 14, 14]           5,856
├─InvertedResidual: 1-9                  [1, 48, 14, 14]           --
|    └─Sequential: 2-11                  [1, 48, 14, 14]           --
|    |    └─ConvBNActivation: 3-26       [1, 144, 14, 14]          7,200
|    |    └─ConvBNActivation: 3-27       [1, 144, 14, 14]          3,888
|    |    └─SqueezeExcitation: 3-28      [1, 144, 14, 14]          11,704
|    |    └─ConvBNActivation: 3-29       [1, 48, 14, 14]           7,008
├─InvertedResidual: 1-10                 [1, 96, 7, 7]             --
|    └─Sequential: 2-12                  [1, 96, 7, 7]             --
|    |    └─ConvBNActivation: 3-30       [1, 288, 14, 14]          14,400
|    |    └─ConvBNActivation: 3-31       [1, 288, 7, 7]            7,776
|    |    └─SqueezeExcitation: 3-32      [1, 288, 7, 7]            41,832
|    |    └─ConvBNActivation: 3-33       [1, 96, 7, 7]             27,840
├─InvertedResidual: 1-11                 [1, 96, 7, 7]             --
|    └─Sequential: 2-13                  [1, 96, 7, 7]             --
|    |    └─ConvBNActivation: 3-34       [1, 576, 7, 7]            56,448
|    |    └─ConvBNActivation: 3-35       [1, 576, 7, 7]            15,552
|    |    └─SqueezeExcitation: 3-36      [1, 576, 7, 7]            166,608
|    |    └─ConvBNActivation: 3-37       [1, 96, 7, 7]             55,488
├─InvertedResidual: 1-12                 [1, 96, 7, 7]             --
|    └─Sequential: 2-14                  [1, 96, 7, 7]             --
|    |    └─ConvBNActivation: 3-38       [1, 576, 7, 7]            56,448
|    |    └─ConvBNActivation: 3-39       [1, 576, 7, 7]            15,552
|    |    └─SqueezeExcitation: 3-40      [1, 576, 7, 7]            166,608
|    |    └─ConvBNActivation: 3-41       [1, 96, 7, 7]             55,488
├─ConvBNActivation: 1-13                 [1, 576, 7, 7]            --
|    └─Conv2d: 2-15                      [1, 576, 7, 7]            55,296
|    └─BatchNorm2d: 2-16                 [1, 576, 7, 7]            1,152
|    └─Hardswish: 2-17                   [1, 576, 7, 7]            --
==========================================================================================
Total params: 927,008
Trainable params: 927,008
Non-trainable params: 0
Total mult-adds (M): 57.54
==========================================================================================
Input size (MB): 0.60
Forward/backward pass size (MB): 22.63
Params size (MB): 3.71
Estimated Total Size (MB): 26.94
==========================================================================================
to_pil_image = transforms.ToPILImage()

def get_hidden_layer_output(m, x):
    outputs = []
    with torch.no_grad():
        for layer in m:
            x = layer(x)
            outputs.append(x)
    return outputs

def min_div(n, x):
    x = int(x)
    while True:
        if n % x == 0:
            return  x
        if x > n:
            return n
        x += 1
        
def apply_cmap(image, cmap="viridis"):
    cm = plt.get_cmap(cmap)
    return Image.fromarray(np.uint8(cm(np.array(image.convert("L"))) * 255))
features = get_hidden_layer_output(model.features, image_tensor)
images = []

for i in range(n):
    s = features[i].shape[1]
    nrow = min_div(s, np.sqrt(2 * s))
    images.append(
        apply_cmap(to_pil_image(
        torchvision.utils.make_grid(
    features[i].transpose(0, 1),
            nrow=nrow,
        ))) 
    )
plt.rcParams["font.size"] = 18
fig, axes = plt.subplots(n, figsize=(30, 100))
for i in range(n):
    ax = axes[i]
    image = images[i]
    ax.imshow(image)
    ax.axes.xaxis.set_visible(False)
    ax.axes.yaxis.set_visible(False)
    shape = tuple(features[i].shape)[1:]
    name = model.features[i].__class__.__name__
    title = f"{i+1}: {name}, {shape}"
    ax.set_title(title)

output_13_0.png

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?