1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

e-Stat API機能で取得した人口移動データをprophetで学習し、2020年の人口移動を予測する

Posted at

e-Stat API機能で取得した人口移動データをprophetで学習し、2020年の人口移動を予測する

人口移動データ取得

import os
import io
import requests
import pandas as pd
from fbprophet import Prophet

%matplotlib inline
pd.plotting.register_matplotlib_converters()
app_id = os.getenv("E_STAT_API_APP_ID")
def get_stats_name_list():
    url = "http://api.e-stat.go.jp/rest/3.0/app/getSimpleStatsList"
    params = {"appId": app_id, "statsNameList": "Y"}
    response = requests.get(url, params=params)
    csv_text = response.text[response.text.find('"TABLE_INF",') :]
    df = pd.read_csv(io.StringIO(csv_text), dtype="object")
    return df
df_stats_name = get_stats_name_list().pipe(
    lambda df: df[df.STAT_NAME.str.contains("人口移動")]
)
df_stats_name
TABLE_INF STAT_CODE STAT_NAME GOV_ORG_CODE GOV_ORG_NAME
17 00200523 00200523 住民基本台帳人口移動報告 00200 総務省
stats_code = df_stats_name.TABLE_INF
def get_stats_list(stats_code):
    url = "http://api.e-stat.go.jp/rest/3.0/app/getSimpleStatsList"
    params = {"appId": app_id, "statsCode": stats_code}
    response = requests.get(url, params=params)
    csv_text = response.text[response.text.find('"TABLE_INF",') :]
    df = pd.read_csv(io.StringIO(csv_text), dtype="object")
    return df
df_stats_list = get_stats_list(stats_code).pipe(
    lambda df: df[
        (df.CYCLE == "月次")
        & (df.TITLE.str.contains("全国"))
        & (df.TITLE.str.contains("2010年1月"))
        & (df.TITLE.str.contains("転入者数"))
    ]
)
df_stats_list[["TABLE_INF", "TITLE"]]
TABLE_INF TITLE
14 0003079521 2010年1月~ 年齢(5歳階級),男女別他都道府県からの転入者数(日本人移動者) 全国,都道府県
stats_data_id = df_stats_list.iloc[0].TABLE_INF
def get_meta_info(stats_data_id):
    url = "http://api.e-stat.go.jp/rest/3.0/app/getSimpleMetaInfo"
    params = {"appId": app_id, "statsDataId": stats_data_id}
    response = requests.get(url, params=params)
    csv_text = response.text[response.text.find('"CLASS_OBJ_ID",') :]
    df = pd.read_csv(io.StringIO(csv_text), dtype="object")
    return df
df_meta_info = get_meta_info(stats_data_id).dropna(axis=1).drop_duplicates('CLASS_OBJ_ID')
df_meta_info
CLASS_OBJ_ID CLASS_OBJ_NAME CLASS_CODE CLASS_NAME
0 tab 表章項目 06 他都道府県からの転入者数
1 cat01 性別 0 総数
4 cat02 年齢(5歳階級) 000 総数
24 area 全国・都道府県 00000 全国
72 time 時間軸(月次) 2018001212 2018年12月
def get_stats_data(stats_data_id, cat01, cat02, area):
    url = "http://api.e-stat.go.jp/rest/3.0/app/getSimpleStatsData"
    params = {
        "appId": app_id,
        "statsDataId": stats_data_id,
        "cdArea": area,
        "cdCat01": cat01,
        "cdCat02": cat02,
    }
    response = requests.get(url, params=params)
    csv_text = response.text[response.text.find('"tab_code",') :]
    df = pd.read_csv(io.StringIO(csv_text), dtype="object")
    return df
df_stas_data = get_stats_data(
    stats_data_id,
    **df_meta_info.groupby("CLASS_OBJ_ID")
    .first()
    .CLASS_CODE[["area", "cat01", "cat02"]]
    .to_dict()
)
def to_prophet_format(df):
    return df.pipe(
        lambda df: df.assign(ds=pd.to_datetime(df["時間軸(月次)"], format="%Y年%m月"))
    ).pipe(
        lambda df: df[["ds", "value"]]
        .astype({"value": int})
        .rename(columns={"value": "y"})
        .sort_values("ds")
    )
df_prophet = df_stas_data.pipe(to_prophet_format)
df_prophet.head()
ds y
107 2010-01-01 126018
106 2010-02-01 137843
105 2010-03-01 478514
104 2010-04-01 398795
103 2010-05-01 150085
df_prophet.tail()
ds y
4 2018-08-01 158332
3 2018-09-01 129291
2 2018-10-01 163296
1 2018-11-01 124295
0 2018-12-01 127839

Prophetで学習、予測

prophet_model = Prophet().fit(df_prophet)
future = prophet_model.make_future_dataframe(periods=24, freq='MS')
forecast = prophet_model.predict(future)
INFO:fbprophet:Disabling weekly seasonality. Run prophet with weekly_seasonality=True to override this.
INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.

プロット

prophet_model.plot(forecast);

output_23_0.png

prophet_model.plot_components(forecast);

output_24_0.png

2020年の予測結果

forecast.set_index("ds")["2020-01-01":].yhat.apply(int).reset_index().pipe(
    lambda df: df.assign(ds=df.ds.dt.strftime("%Y年%m月"))
).set_index("ds")
yhat
ds
2020年01月 123240
2020年02月 137012
2020年03月 458678
2020年04月 393502
2020年05月 164402
2020年06月 133720
2020年07月 156698
2020年08月 159363
2020年09月 135871
2020年10月 158294
2020年11月 123974
2020年12月 125429
forecast.set_index('ds')['2020-01-01':].yhat.plot();

output_27_0.png

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?