1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

数学-指数・対数関数の極限公式の証明

Last updated at Posted at 2018-08-22

指数・対数関数の極限公式の証明

数学に戻る

証明

\\
\begin{array}{ll}

(1) &\lim_{x \to 0} \frac{e^x - 1}{x} = 1  \because ネイピア数の定義式\\
\\
(2) &\lim_{x \to 0} \frac{log(1 + x)}{x} = 1\\
\\
&u = e^x - 1 とおくと、e^x = 1 + u \therefore x = \log (1 + u)\\
&{x \to 0} のとき、{u \to 0} となるので、 \because \lim_{x \to 0} e^x - 1 = 1 - 1 = 0\\
&\lim_{x \to 0} \frac{e^x - 1}{x} = 1 からxを消して\\
&\lim_{u \to 0} \frac{u}{\log (1 + u)} = 1 逆数も成り立つので\\
&\lim_{u \to 0} \frac{\log (1 + u)}{u} = 1\\
& \therefore \lim_{x \to 0} \frac{\log (1 + x)}{x} = 1\\
\\
(3) &\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e\\
\\
& \lim_{x \to 0} \frac{\log (1 + x)}{x} = 1 より\\
\\
&\lim_{x \to 0} \frac{\log (1 + x)}{x} = \lim_{x \to 0} \frac{1}{x} \cdot \log (1 + x) = \lim_{x \to 0} \log (1 + x)^{\frac{1}{x}}\\
&1 = \log e\\
\\
&\therefore \lim_{x \to 0} \log (1 + x)^{\frac{1}{x}} = \log e\\
&\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e  \because \log (1 + x)^{\frac{1}{x}} が e に近づく\\
\\
(4) &\lim_{x \to \pm \infty} (1 + \frac{1}{x})^{x} = e\\
\\
&\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e より、x = \frac{1}{t} (t = \frac{1}{x}) とすると\\
&{x \to 0} のとき、{t \to \pm \infty}\\
&\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = \lim_{t \to \pm \infty} (1 + \frac{1}{t})^t\\
&\therefore \lim_{x \to \pm \infty} (1 + \frac{1}{x})^x\\
\\
\end{array}
1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?