0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

漸化式 - 例題2

Posted at

漸化式 - 例題

4.特殊解型

ex) a_{n+1} = 4a_n - 3, a_1 = 2 \\
\begin{array}{l} \\
特殊解\alphaを求める。\\
\alpha = 4 \alpha - 3 \\
\therefore \alpha = 1 \\
\\
a_{n+1} - 1 = 4(a_n - 1) とおける \\
a_n - 1 = 4 \cdot 4^{n-1} \\
a_n = (a_1 - 1) \cdot 4^{n-1} + 1 \\
a_n = 4^{n-1} + 1 \\
\end{array} \\

5.指数型

ex) a_{n+1} = 3a_n +4 \cdot 5^n, a_1 = 2 \\
\begin{array}{l} \\
両辺を5^{n+1}で割ると \\
\frac{a_{n+1}}{5^{n+1}} = \frac{3}{5}\frac{a_n}{5^n} + \frac{4}{5} \\
特殊解\alpha は、\alpha = \frac{3}{5}\alpha + \frac{4}{5} より、\alpha = 2 \\
\frac{a_{n+1}}{5^{n+1}} - 2 = \frac{3}{5}(\frac{a_n}{5^n} - 2) \\
\frac{a_n}{5^n} - 2 = (\frac{a_1}{5^1} - 2)(\frac{3}{5})^{n-1} \\
\frac{a_n}{5^n} - 2 = (\frac{2}{5} - 2)(\frac{3}{5})^{n-1} \\
\frac{a_n}{5^n} = - \frac{8}{5}(\frac{3}{5})^{n-1} + 2 \\
a_n = -8 \cdot 3^{n-1} + 2 \cdot 5^n
\end{array} \\

6.N次式型

ex) a_{n+1} = 2a_n + n^2-2n+3, a_1 = -3 \\
\begin{array}{l} \\
a_{n+1} + \alpha (n+1)^2 + \beta (n+1) + \gamma = 2(a_n + \alpha n^2 + \beta n + \gamma) \\
\Leftrightarrow a_{n+1} = 2a_n + \alpha n^2 + (-2\alpha + \beta)n -\alpha -\beta + \gamma \\
これを元の漸化式と比較すると\\
\left\{
\begin{array}{l} 
\alpha &= 1\\
-2\alpha + \beta &= -2 \\
-\alpha -\beta + \gamma &= 3 \\
\end{array}
\right \}
\therefore \alpha = 1, \beta = 0, \gamma = 4 \\
よって\\
a_{n+1} + (n+1)^2 + 4 = 2(a_n + n^2 + 4) \\
a_n + n^2 + 4 = (a_1 + 1^2 + 4) \cdot 2^{n-1} \\
a_n + n^2 + 4 = (-3 + 1^2 + 4) \cdot 2^{n-1} \\
a_n = 2^n -n^2 - 4 \\
\end{array} \\
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?