0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

漸化式 - 例題3

Last updated at Posted at 2021-03-09

7.階比型

\require{cancel}
ex) a_{n+1} = \frac{n+1}{n}a_n, a_1 = -3 \\
\begin{array}{l} \\
n \ge 2 のとき \\
\begin{array}{l} \\
a_n &= \frac{n}{n-1}a_{n-1} \\
&= \frac{n}{n-1}\frac{n-1}{n-2}a_{n-2} \\
&= \frac{n}{n-1}\frac{n-1}{n-2}\frac{n-2}{n-3}a_{n-3} \\
&= \vdots \\
&= \frac{n}{\cancel{n-1}}\frac{\cancel{n-1}}{\cancel{n-2}}\frac{\cancel{n-2}}{\cancel{n-3}} \cdots \frac{\cancel{2}}{1} a_1 \\
&= n a_1 \\
&= 3n \\
\end{array} \\
これは n = 1でも成り立つ \\
a_n = 3n \\
\end{array} \\

8.次数相異型

ex) a_{n+1} = 3 \sqrt{a_n}, a_1 = 27 \\
\\
漸化式の形と初項の値から、すべての自然数 n についてa_n \gt 0 であるとわかる。 \\
\begin{array}{l} \\
a_{n+1} = 3 a_n^{\frac{1}{2}} \\
\log_3{a_{n+1}} = \log_3{3a_n^{\frac{1}{2}}} \\
\log_3{a_{n+1}} = \frac{1}{2}(\log_3{3a_n)} \\
\log_3{a_{n+1}} = \frac{1}{2}(\log_3{3} + \log_3{a_n}) \\
\log_3{a_{n+1}} = \frac{1}{2} + \frac{1}{2}(\log_3{a_n}) \Rightarrow 特殊解型 \\
\\
特殊解\alphaは、\alpha = \frac{1}{2} \alpha + 1 \rightarrow \alpha = 2 \\
\log_3{a_{n+1}} - 2 = \frac{1}{2}(\log_3{a_n} - 2) \\
\log_3{a_n} - 2 = (\log_3{a_1} - 2) (\frac{1}{2})^{n-1} \\
\log_3{a_n} - 2 = (\log_3{27} - 2) (\frac{1}{2})^{n-1} \\
\log_3{a_n} - 2 = (\frac{1}{2})^{n-1} \\
\log_3{a_n} = (\frac{1}{2})^{n-1} + 2 \\
a_n = 3^{(\frac{1}{2})^{n-1} + 2} \\
\end{array} \\

9.分数型

ex) (q = 0 型) \\
a_{n+1} = \frac{3 a_n}{a_n + 2}, a_1 = \frac{1}{2} \\
\\
a_{n+1} = 0 だと仮定する。このときa_n = 0 となるが、 \\
これは a_{n+1} = a_n = a_{n-1} = \cdots = a_1 = 0 を意味し、a_1 = \frac{1}{2} に矛盾する。\\
よってすべての自然数nについてa_n \ne 0 \\
a_n \ne 0 より、逆数を取ると、\\
\begin{array}{l} \\

\frac{1}{a_{n+1}} = \frac{a_n + 2}{3a_n} \\
\frac{1}{a_{n+1}} = \frac{2}{3}\frac{1}{a_n} + \frac{1}{3} (特殊解型)\\
\\
特殊解\alphaは、\alpha = \frac{2}{3} \alpha + \frac{1}{3} \rightarrow \alpha = 1 \\
(\frac{1}{a_{n+1}} - 1) = \frac{2}{3}(\frac{1}{a_n} - 1)\\
\frac{1}{a_n} - 1 = (\frac{1}{a_1} - 1)(\frac{2}{3})^{n-1} \\
\frac{1}{a_n} - 1 = (\frac{2}{3})^{n-1} \\
\frac{1}{a_n} = (\frac{2}{3})^{n-1} + 1 \\
a_n = \frac{1}{(\frac{2}{3})^{n-1} + 1} \\
\end{array} \\
ex) (q \ne 0 型) \\
a_{n+1} = \frac{4 a_n - 6}{a_n - 1}, a_1 = 5 \\
\\
\begin{array}{l} \\
特殊解\alpha は、\alpha = \frac{4 \alpha - 6}{\alpha - 1} \rightarrow \alpha^2 -5\alpha + 6 = 0 \\
(\alpha - 2)(\alpha - 3) = 0 よって \alpha = 2, 3 \\
\\
(a_{n+1} - 2) = \frac{4 a_n - 6}{a_n - 1} - 2 \\
= \frac{4 a_n - 6 - 2(a_n - 1)}{a_n - 1} \\
= \frac{2 a_n - 4}{a_n - 1} \\
= \frac{2(a_n - 2)}{(a_n - 2) + 1} \\
\\
a_{n+1} = 2 と仮定する。このときa_n = 2となるが、\\
これはa_{n+1} = a_n = \cdots = a_1 = 2 を意味し、a_1 = 5 と矛盾。\\
よってすべての自然数nについてa_n \ne = 2 \\
a_n \ne 2 より逆数をとると \\
\frac{1}{(a_{n+1} - 2)} = \frac{(a_n - 2) + 1}{2(a_n - 2)} \\
= \frac{1}{2}\frac{1}{a_n - 2} + \frac{1}{2} (特殊解型)\\
\\
特殊解\alphaは、\alpha = \frac{1}{2}\alpha + \frac{1}{2} \rightarrow \alpha = 1 \\
(\frac{1}{(a_{n+1} - 2)} - 1) = \frac{1}{2}(\frac{1}{a_n - 2} - 1) \\
\frac{1}{a_n - 2} - 1 = (\frac{1}{a_1 - 2} - 1)(\frac{1}{2})^{n-1} \\
\frac{1}{a_n - 2} - 1 = -\frac{2}{3}(\frac{1}{2})^{n-1} \\
\frac{1}{a_n - 2} = -\frac{2}{3}(\frac{1}{2})^{n-1} + 1 \\
a_n - 2 = \frac{1}{1 -\frac{2}{3}(\frac{1}{2})^{n-1}} \\
a_n = \frac{1}{1 -\frac{2}{3}(\frac{1}{2})^{n-1}} + 2 \\
\end{array} \\
a_{n+1} - \alpha = \frac{p a_n + q}{ r a_n + s} - \alpha \\
a_{n+1} - \alpha = \frac{(p a_n + q) - \alpha(r a_n + s)}{ r (a_n - \alpha) + s + r \alpha} \\
a_{n+1} - \alpha = \frac{(p -\alpha r)a_n + q - \alpha s}{ r (a_n - \alpha) + s + r \alpha} \\
a_{n+1} - \alpha = \frac{(p -\alpha r)(a_n - \alpha) +\alpha(p - \alpha r) + (q - \alpha s)}{ r (a_n - \alpha) + s + r \alpha} \\
\\
ここで、\alpha(p - \alpha r) + (q - \alpha s) = 0 であればいい。\\
p \alpha + q = \alpha(r \alpha + s) \\
\therefore \alpha = \frac{p \alpha + q}{r \alpha + s} \\
つまり、\alpha = \frac{p \alpha + q}{r \alpha + s} とおいた特殊解\alphaを使用すれば、\\
q = 0の形式に変形できる。\\
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?