2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

数学-三角関数-円周角の定理の証明

Last updated at Posted at 2018-08-16

円周角の定理の証明

円周角の定理

  • 1つの孤に対する円周角の大きさは、中心角の大きさの半分になる
  • 同じ孤に対する円周角は等しい

ACが円の中心を通る場合

OB と OC は円の半径だから、OB = OC\\
\triangle{OBC}は二等辺三角形になるので、\angle{OBC} = \angle{OCB}\\
 \\
\angle{AOB} + \angle{BOC} = 180^\circ (\because 直線) ①\\
\angle{OBC} + \angle{OCB} + \angle{BOC} = 180^\circ  (\because \triangle{OBC}内角の和) ②\\
①②より、\angle{AOB} = \angle{OBC} + \angle{OCB} = 2 \angle{OCB} (\because \angle{OBC} = \angle{OCB})\\


円周角の内に円の中心がある場合

C から 円の中心 O を通る線を引き円との交点をDとする。\\
OA = OB = OC は円の半径だから、\triangle{OAC} と \triangle{OBC} は二等辺三角形になるので、\\
\angle{OAC} = \angle{OCA}\\
\angle{OBC} = \angle{OCB}\\
180^\circ = \angle{AOD} + \angle{AOC} = \angle{OAC} + \angle{OCA} + \angle{AOC} (\because \triangle{OAC}の内角の和)\\
よって、\angle{AOD} = \angle{OAC} + \angle{OCA} = 2 \angle{OCA}\\
同様に、\angle{BOD} = \angle{OBC} + \angle{OCB} = 2 \angle{OCB}\\
 \\
\angle{AOB} = \angle{AOD} + \angle{BOD} = 2 \angle{OCA} + 2 \angle{OCB} = 2 (\angle{OCA} + \angle{OCB}) = 2 \angle{ACB}\\

円周角の外に円の中心がある場合

2
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?