0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

漸化式 - 例題4

Last updated at Posted at 2021-03-09

10. Snを含む漸化式

ex) S_n = 4a_n - 6n \\

\begin{array}{l} \\
n = 1のとき\\
S_1 = a_1 = 4a_1 - 6 \\
a_1 = 2\\
a_{n+1} = S_{n+1} - S_n \\
= (4a_{n+1} -6(n+1)) - (4a_n - 6n) \\
= 4a_{n+1} -4a_n -6 \\
\therefore a_{n+1} = \frac{4}{3} a_n + 2 (特殊型)\\
\\
特殊解\alphaは、\alpha = \frac{4}{3}\alpha + 2 \rightarrow \alpha = -6 \\
a_{n+1} - 6 = \frac{4}{3}(a_n - 6) \\
a_n - 6 = (a_1 - 6) (\frac{4}{3})^{n - 1} \\
a_n = -4 (\frac{4}{3})^{n - 1} + 6 \\
\end{array} \\

11. 隣接3項型

ex) a_{n+2} - 5 a_{n+1} + 6 a_n = 0, a_1 = 4, a_2 = 1 \\

\begin{array}{l} \\
\alpha^2 -5 \alpha + 6 = 0 を解くと、\\
(\alpha - 2)(\alpha -3) = 0 \Rightarrow \alpha = 2, 3 \\
\\
\begin{cases}
a_{n+2} - 2 a_{n+1} = 3(a_{n+1} - 2 a_n) \cdots ① \\
a_{n+2} - 3 a_{n+1} = 2(a_{n+1} - 3 a_n) \cdots ② \\
\end{cases}\\
①より\\
\begin{array}{l}
a_{n+1} -2 a_n &= (a_2 -2 a_1) 3^{n-1} \\
&= -7 \cdot 3^{n-1} \cdots ①' \\
\end{array}
\\
②より\\
\begin{array}{l}
a_{n+1} -3 a_n &= (a_2 -3 a_1) 2^{n-1} \\
&= -11 \cdot 3^{n-1} \cdots ②' \\
\end{array} \\

①' - ②' より\\
a_n = 11 \cdot 3^{n-1} -7 \cdot 3^{n-1}

\end{array} \\
ex) a_{n+2} - 6 a_{n+1} + 9 a_n = 0, a_1 = 1, a_2 = 5 \\
\\
\begin{array}{l} \\
\alpha^2 -6 \alpha + 9 = 0 を解くと、\\
(\alpha - 3)^2 = 0 \Rightarrow \alpha = 3 \\
\\
a_{n+2} - 3 a_{n+1} = 3(a_{n+1} - 3 a_n) \\
\begin{array}{l}
a_{n+1} -3 a_n &= (a_2 -3 a_1) 3^{n-1} \\
a_{n+1} -3 a_n &= 2 \cdot 3^{n-1} \\
a_{n+1} &= 3 a_n + \frac{2}{3} \cdot 3^n (指数型)3^{n+1}で両辺を割る\\
\frac{a_{n+1}}{3^{n+1}} &= \frac{a_n}{3^n} + \frac{2}{9} \\
\frac{a_n}{3^n} &= \frac{a_1}{3^1} + \frac{2}{9}(n - 1) \\
\frac{a_n}{3^n} &= \frac{1}{3} + \frac{2}{9}(n - 1) \\
\frac{a_n}{3^n} &= \frac{2}{9}n + \frac{1}{9} \\
a_n &= 3^n (\frac{2}{9}n + \frac{1}{9}) \\
a_n &= 3^{n-2} (2n + 1) \\
\end{array} \\

\end{array}

12.連立漸化式

ex) 
\begin{cases}
a_{n+1} = 4a_n - b_n \\
b_{n+1} = 2a_n + b_n a_1 = 4, b_1 = 1\\
\end{cases}

\begin{array}{l} \\
\end{array} \\
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?