0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

微分方程式 - 同次形

Last updated at Posted at 2024-03-21

解法

\begin{array}{l}
y' = f \left( \frac{y}{x} \right)  \cdots (*) \\
\\
u = \frac{y}{x} とおく。\\
このとき、y = ux であるので両辺を微分すると y' = u'x + ux' = u'x + u \\
これを(*)に代入すると、\\
u'x + u = f(u) \\
\\
u' = \frac{du}{dx} とおいて整理すると、\\
\frac{du}{dx} = \frac{1}{x} \left( f(u) - u \right)   \Rightarrow 変数分離形 \\
\\
f(u) \ne u のとき \\
\int{\frac{1}{f(u) - u}}du = \int{ \frac{1}{x} } dx \\
\rightarrow uとxの関係式を求めて、uを\frac{y}{x}に戻す。\\
\end{array}

例題

  • ex1) $y' = \frac{y^2}{x^2 + xy}$
\begin{array}{l}
右辺をx^2で割ると、y' = \frac{(\frac{y}{x})^2}{1 + \frac{y}{x}} \\
\\
u = \frac{y}{x} とすると、y = ux から y' = u'x + u \\
u'x + u = \frac{u^2}{1 + u} \\
u' = - \frac{u}{1 + u} \frac{1}{x} \\
\frac{du}{dx} = - \frac{u}{1 + u} \frac{1}{x} \cdots ①\\
u = 0 は①を満たす解である。\\
u \ne 0 のとき \\
\int{ \frac{1 + u}{u} }du = - \int { \frac{1}{x} } dx \\
\int{ \left( 1 + \frac{1}{u} \right) }du = - \int { \frac{1}{x} } dx \\
\int{ }du + \int{ \frac{1}{u} }du = - \int { \frac{1}{x} } dx \\
u + log \left| u \right| = -log \left| x \right| + C \\
log \left| ux \right| = -u + C \\
| ux | = e^{-u + C} \\
ux = \pm e^{-u + C} \\
ux = \pm e^C e^{-\frac{y}{x}} \\
ux = C' e^-u (C' は \pm e^C)\\
\\
\frac{y}{x}x = C' e^{-u}\\
y = 0 の解は、C'=0 とすれば表せるので、改めてCとすれば、\\
\\
y = C e^{-\frac{y}{x}} \\
\end{array}
  • ex2) $y' = \frac{y}{x} + cos^2\frac{y}{x}, y(1) = \frac{\pi}{4}$
\begin{array}{l}
tan \frac{y}{x} = log |x| + 1\\
\end{array}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?