0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

数学-微分公式の証明

Last updated at Posted at 2018-08-22

微分公式の証明

数学に戻る

目次

(1) $ (x^n)' = n x^{n - 1} $
(2) $ (\sin x)' = \cos x, (\sin ax)' = a \cos x $
(3) $ (\cos x)' = - \sin x, (\cos ax)' = -a \sin x $
(4) $ (\tan x)' = \frac{1}{\cos^2 x} $
(5) $ (e^x)' = e^x $
(6) $ (a^x)' = a^x \log a $
(7) $ (\log x)' = \frac{1}{x} (x > 0)$
(8) $ \{ \log f(x) \}' = \frac{f(x)'}{f(x)} (f(x) > 0)$

証明

(1)

$ (x^n)' = n x^{n - 1} $


  • 二項定理を用いた定番の証明
\begin{array}{ll}
&微分の定義より、f(x) = x^n の導関数 f(x)' は\\
f(x)' &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\
&= \lim_{h \to 0} \frac{(x + h)^n - x^n}{h}\\
&この分子を二項定理を用いて展開すると\\
&= \lim_{h \to 0} \frac{(x^n + nhx^{n-1} + {}_n C_2 h^2 x^{n-2} + \cdots + h^n) - x^n}{h}\\
&= \lim_{h \to 0} \frac{nhx^{n-1} + {}_n C_2 h^2 x^{n-2} + \cdots + h^n}{h}\\
&= \lim_{h \to 0} nx^{n-1} + {}_n C_2 h x^{n-2} + \cdots + h^{n-1}\\ 
&= nx^{n-1}
\end{array}
  • 数学的帰納法による証明
\begin{array}{lrl}
n = 1 &のとき、&f(x) = x となり\\
&&f'(x) = \lim_{h \to 0} \frac{(x + h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1\\
&&nx^{n-1} = 1 \cdot x^{1-1} = 1\\
&&で成り立つ。\\
\\
n = k &で成り立つと&仮定すると、(x^k)' = kx^{k-1}\\
&(x^{k+1})' &= (x \cdot x^k)' \\
&&= (x)' \cdot x^k + x \cdot (x^k)'\\
&&= 1 \cdot x^k + x \cdot kx^{k-1}\\
&&= x^k + kx^k\\
&&= (k+1)x^k\\
&n = k+1 のときも成り立つ & \therefore nx^{n-1}
\end{array}

(2)

$ (\sin x)' = \cos x $
$ (\sin ax)' = a \cos x $


\begin{array}{ll}

f(x)' &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\\
&= \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}\\
&= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}\\
&= \lim_{h \to 0} \left( \cos x \cdot \frac{\sin h}{h} - \sin x \cdot \frac{1 - \cos h}{h} \right)\\
&= \lim_{h \to 0} \left( \cos x \cdot \frac{\sin h}{h} - \sin x \cdot h \cdot \frac{1 - \cos h}{h^2} \right)\\
&= \cos x \cdot 1 - \sin x \cdot 0 \cdot \frac{1}{2}\\
&= \cos x \\

\\

f(x)' &= (\sin ax)' \cdot (ax)' \because 合成関数の微分 \\
&= a \cos x \\

\end{array}

(3)

$ (\cos x)' = - \sin x $
$ (\cos ax)' = -a \sin x $


\begin{array}{ll}

f(x)' &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\\
&= \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}\\
&= \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}\\
&= \lim_{h \to 0} \left(- \sin x \cdot \frac{\sin h}{h} - \cos x \cdot \frac{1 - \cos h}{h} \right)\\
&= \lim_{h \to 0} \left(- \sin x \cdot \frac{\sin h}{h} - \cos x \cdot h \cdot \frac{1 - \cos h}{h^2} \right)\\
&= - \sin x \cdot 1 - \cos x \cdot 0 \cdot \frac{1}{2}\\
&= - \sin x\\
\\

f(x)' &= (\cos ax)' \cdot (ax)' \because 合成関数の微分\\
&= -a \sin x \\

\end{array}

(4)

$ (\tan x)' = \frac{1}{\cos^2 x} $


\begin{array}{ll}

(\tan x)' &= (\frac{\sin x}{\cos x})'\\
&= \frac{(\sin x)' \cdot \cos x - \sin x \cdot (\cos x)'}{\cos^2 x}\\
&= \frac{\cos x \cdot \cos x - \sin x \cdot (- \sin x)}{\cos^2 x}\\
&= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}\\
&= \frac{1}{\cos^2 x}\\

\end{array}

(5)

$ (e^x)' = e^x $


\begin{array}{ll}

f(x)' &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\\
&= \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}\\
&= \lim_{h \to 0} \frac{e^x(e^h - 1)}{h}\\
&= \lim_{h \to 0} e^x \cdot \frac{(e^h - 1)}{h}\\
&= e^x \because 指数・対数関数の極限公式 \lim_{h \to 0} \frac{(e^h - 1)}{h} = 1\\

\end{array}

(6)

$ (a^x)' = a^x \log a $


\begin{array}{ll}

f(x)' &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\\
&= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}\\
&= \lim_{h \to 0} \frac{a^x(a^h - 1)}{h}\\
&= a^x \cdot \lim_{h \to 0} \frac{a^h - 1}{h}\\
&= a^x \cdot \lim_{h \to 0} \frac{e^{\log a^h} - 1}{\log a^h} \cdot \frac{\log a^h}{h}\\
& u = \log a^h とおくと、{h \to 0} のとき {u \to 0}\\
&= a^x \cdot \lim_{u \to 0} \frac{e^u - 1}{u} \cdot \frac{\log a^h}{h}\\
&= a^x \cdot 1 \cdot \frac{\log a^h}{h}\\
&= a^x \cdot \frac{h \cdot \log a}{h}\\
&= a^x \cdot \log a\\
\\
&a^h = e^{\log a^h} \because 両辺の \log をとるとおなじになる
\end{array}

(7)

$ (\log x)' = \frac{1}{x} (x > 0)$


\begin{array}{ll}

f(x)' &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\\
&= \lim_{h \to 0} \frac{\log (x+h) - \log x}{h}\\
&= \lim_{h \to 0} \frac{\log \left( \frac{x+h}{x} \right)}{h}\\
&= \lim_{h \to 0} \frac{\log \left( 1 + \frac{h}{x} \right)}{h}\\
&= \lim_{h \to 0} \frac{1}{h} \cdot \log \left( 1 + \frac{h}{x} \right)\\
&= \lim_{h \to 0} \frac{1}{x} \cdot \frac{x}{h} \cdot \log \left( 1 + \frac{h}{x} \right)\\
&= \lim_{h \to 0} \frac{1}{x} \cdot \log \left( 1 + \frac{h}{x} \right)^{\frac{x}{h}}\\
& u = \frac{h}{x} とおくと、{h \to 0} のとき {u \to 0}\\
&= \lim_{u \to 0} \frac{1}{x} \cdot \log \left( 1 + u \right)^{\frac{1}{u}} \because \lim_{u \to 0} \left( 1 + u \right)^{\frac{1}{u}} = e\\
&= \frac{1}{x} \cdot \log e \because \log e = 1\\
&= \frac{1}{x}

\end{array}

(8)

$ \{ \log f(x) \}' = \frac{f(x)'}{f(x)} (f(x) > 0)$



y = \log f(x)、t = f(x) とおくと\\

\begin{array}{ll}

\{ \log f(x) \}' &= y'\\
&= \frac{dy}{dt} \cdot \frac{dt}{dx}\\
&= \frac{d(\log t)}{dt} \cdot \frac{d\{f(x)\}}{dx} 
&= \frac{1}{t} \cdot f'(x)\\
&= \frac{f(x)}{f'(x)}\\

\end{array}

微分の重要公式

(1)

$ \{ f(x) \cdot g(x) \}' = f'(x) \cdot g(x) + f(x) \cdot g'(x) $


\begin{array}{ll}

\{ f(x) \cdot g(x) \}' &= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}\\
&= \lim_{h \to 0} \frac{f(x+h)g(x+h) + \{ - f(x)g(x+h) + f(x)g(x+h) \} - f(x)g(x)}{h}\\
&= \lim_{h \to 0} \frac{\{f(x+h) - f(x) \} \cdot g(x+h) + f(x) \cdot \{g(x+h) - g(x) \}}{h}\\
&= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot g(x+h) + f(x) \cdot \frac{g(x+h) - g(x)}{h}\\
&= f'(x) \cdot g(x) + f(x) \cdot g'(x)\\

\end{array}

(2)

$ \left( \frac{f(x)}{g(x)} \right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\{g(x)\}^2} $


\begin{array}{ll}

\left( \frac{f(x)}{g(x)} \right)' &= \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} -\frac{f(x)}{g(x)}}{h}\\
&= \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x+h)}{h \cdot g(x+h) \cdot g(x)}\\
&= \lim_{h \to 0} \frac{f(x+h)g(x) + \{ - f(x)g(x) + f(x)g(x) \} - f(x)g(x+h)}{h \cdot g(x+h) \cdot g(x)}\\
&= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \frac{g(x)}{g(x+h) \cdot g(x)} - \frac{f(x)}{g(x+h) \cdot g(x)} \cdot \frac{g(x+h) - g(x)}{h}\\
&= f'(x) \cdot \frac{1}{g(x)} - \frac{f(x)}{\{g(x)\}^2} \cdot g'(x)\\
&= \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\{g(x)\}^2}\\

\end{array}

(3)

$ \{ f(g(x)) \}' = f'(g(x)) \cdot g'(x) $



\begin{array}{ll}

\{ f(g(x)) \}' &= \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h}\\
& g(x+h) - g(x) = k とおくと g(x+h) = g(x) + k\\
& {h \to 0} のとき {k \to 0}\\
&= \lim_{h \to 0} \frac{f(g(x) + k) - f(g(x))}{h}\\
& また、g(x) = u とおく\\
&= \lim_{h \to 0} \frac{f(u + k) - f(u)}{h}\\
&= \lim_{h \to 0} \frac{f(u + k) - f(u)}{k} \cdot \frac{k}{h}\\
&= \lim_{h \to 0, k \to 0} \frac{f(u + k) - f(u)}{k} \cdot \frac{g(x+h) - g(x)}{h}\\
&= f'(u) \cdot g'(x)\\
&= f'(g(x)) \cdot g'(x)\\

\end{array}

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?