0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

a*bの値が与えられたときにaとbをベイズで推定してみる

Last updated at Posted at 2024-01-23

基礎代謝から体重の推移のモデリングをしていたときに未知数が多く、どのくらい識別できるのか不安になったので、実験として。

データは単純にa,bを正規分布から生成


library(rstan)

N=1000
a=rnorm(N,mean=100,sd=10)
b=rnorm(N,mean=2,sd=0.2)

lst=list(N=N,y=a*b)
fit=stan(model_code = scode,data=lst,
         warmup=300,iter=1000,chain=1)
data {
  int N;
  real y[N];
}
parameters {
  real<lower=0> a;
  real b;
  real sigma;
}

model {
  sigma~cauchy(0.01,0.01);
  //a~normal(140,30); 
  //b~normal(2.5,0.5);
  a~normal(130,30);
  b~normal(1.5,0.5);
  
  y~normal(a*b,sigma);
}

print(fit)

事前分布を色々かえると、a,b同じ方向にずらしたときは比較的うまくいき、上下反対方向にずらすと的外れになっていくっぽい。ただし一応正しい値のほうにズレていく。

なぜ識別できるのか考えてみると、y,bが与えられたときのaの事後分布見ると
$P(a|y,b)∝P(y,b|a)*P(a)$
となるが、
$P(y,b|a)$ の部分は

yが平均付近でbが(真の)平均付近ならaも平均付近の確率が高く
yが平均付近でbが高ければaは低い確率が高く
それにaの事前分布をかけた値が高い所からサンプリングされる確率が高くなる。
どっちにしろ真の確率分布*事前分布が高い所からサンプリングされる確率が高くなり、収束していくのもわかる気がする。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?