0
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

国勢調査2020の回答状況を可視化

Posted at

はじめに

kokusei2020.png

国勢調査2020の都道府県別回答状況のExcelをスクレイピングしてインターネット回答率・郵送回答率を可視化

スクレイピング

import requests
from bs4 import BeautifulSoup

import re

from urllib.parse import urljoin

url = "https://www.kokusei2020.go.jp/internet/"

r = requests.get(url)
r.raise_for_status()

soup = BeautifulSoup(r.content, "html.parser")

links = {}

for i in soup.find_all("span", text="Excel"):

    link = urljoin(url, i.find_parent("a").get("href"))

    m = re.search("census_answers_(pref|city)_\d{6}.xlsx", link)

    if m:
        links[m.group(1)] = link

links

都道府県別

import pandas as pd

df_pref = pd.read_excel(
    links["pref"],
    index_col=[0, 1],
    header=None,
    skiprows=9,
    usecols=[1, 2, 3, 4, 5, 6, 7],
    names=["コード", "都道府県", "H27世帯数", "ネット", "郵送", "ネット率", "郵送率"],
)

df_pref["回答数"] = df_pref["ネット"] + df_pref["郵送"]

df_pref["ネット率"] *= 100
df_pref["郵送率"] *= 100

df_pref["回答率"] = df_pref["ネット率"] + df_pref["郵送率"]

df_pref.to_csv("pref.csv", encoding="utf_8_sig")

市町村別

df_city = pd.read_excel(
    links["city"],
    index_col=[0, 1, 2],
    header=None,
    skiprows=9,
    usecols=[1, 2, 3, 4, 5, 6, 7, 8],
    names=["コード", "都道府県", "市区町村", "H27世帯数", "ネット", "郵送", "ネット率", "郵送率"],
)

df_city["回答数"] = df_city["ネット"] + df_city["郵送"]

df_city["ネット率"] *= 100
df_city["郵送率"] *= 100

df_city["回答率"] = df_city["ネット率"] + df_city["郵送率"]

df_city.to_csv("city.csv", encoding="utf_8_sig")

df_city

可視化

import matplotlib.pyplot as plt
import seaborn as sns

sns.set()

import japanize_matplotlib

# 解像度
import matplotlib as mpl

mpl.rcParams["figure.dpi"] = 200

df1 = df_pref.sort_index(ascending=False).reset_index(level="コード", drop=True)

df1.loc[:, ["ネット率", "郵送率"]].plot.barh(stacked=True, figsize=(5, 10))

plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0, fontsize=8)

plt.savefig("01.png", dpi=200, bbox_inches="tight")
plt.show()

pref.png

0
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?