4
9

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Pandasでとりあえずデータの概観を掴む(掴みたい)

Last updated at Posted at 2018-05-25

pandas_logo.png

[注意]この記事は忘備録的要素が強く、随時更新して自分用のチュートリアル化する予定

Pandasは高度かつ使いやすいデータ構造とデータ解析を提供するオープンソースのPythonのライブラリ
Pandasを使ってまずデータがどういうものなのかを判別してから分析を始めることをオススメ

環境

  • pandas 0.23.0
  • Python 3.6.4
  • jupyter notebook 5.5.0
  • macOS High Sierra

導入と下準備

インストールはpipで行うことができる。

terminal
pip install pandas

インポートとデータセット読み込む。今回はタイタニック号のデータを使う。

import pandas as pd 
# Load in train and test dataset
df_train = pd.read_csv('../input/train.csv')
df_train.head(3)

shapeでデータの次元サイズを参照

ここでデータセットの次元数を確認する。

print(df_train.shape)
(891, 12)

columnsでデータの列の名前を参照

print(df_train.columns)
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
       'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
      dtype='object')

head()でデータの中身を実際に確認

shapeでデータの次元がわかったので、実際の値を確認してみる

df_train.head(3)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S

infoで欠損値やデータ型を参照

df_train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          204 non-null object
Embarked       889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB

isnull().sum()で欠損値をカウント

df_train.isnull().sum()
PassengerId      0
Survived         0
Pclass           0
Name             0
Sex              0
Age            177
SibSp            0
Parch            0
Ticket           0
Fare             0
Cabin          687
Embarked         2
dtype: int64

describeで要約統計量の表示

df_full = pd.concat([df_train, df_test], axis = 0, ignore_index=True)
print(df_full.shape)
df_full.describe()
(1309, 12)


/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=True'.

To retain the current behavior and silence the warning, pass sort=False

  """Entry point for launching an IPython kernel.
Age Fare Parch PassengerId Pclass SibSp Survived
count 1046.000000 1308.000000 1309.000000 1309.000000 1309.000000 1309.000000 891.000000
mean 29.881138 33.295479 0.385027 655.000000 2.294882 0.498854 0.383838
std 14.413493 51.758668 0.865560 378.020061 0.837836 1.041658 0.486592
min 0.170000 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000
25% 21.000000 7.895800 0.000000 328.000000 2.000000 0.000000 0.000000
50% 28.000000 14.454200 0.000000 655.000000 3.000000 0.000000 0.000000
75% 39.000000 31.275000 0.000000 982.000000 3.000000 1.000000 1.000000
max 80.000000 512.329200 9.000000 1309.000000 3.000000 8.000000 1.000000

順次更新

twitterでも機械学習に関する情報・オススメ記事などつぶやいているので、フォローお待ちしています。
@bam6o0

4
9
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
9

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?