3
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

【three.js】Geometryクラスで正三角柱をつくる

Posted at

three.jsの公式チュートリアルCreating a sceneではBoxGeometryを使って立方体を描いています。
もっと基本的なクラスであるGeometryクラスを使い、正三角柱を作ってみました。
正三角柱の中心(底面の正三角形の重心、かつ側面の高さ半分のところ)に座標原点が来るようにしました。
EdgesGeometryを利用して、ジオメトリのワイヤフレーム(辺)を黒い線で描いています。
また、座標軸を赤緑青で描いています。

<!DOCTYPE html>
<html>
	<head>
		<meta charset=utf-8>
		<title>My first three.js app</title>
		<style>
			body { margin: 0; }
			canvas { width: 100%; height: 100% }
		</style>
	</head>
	<body>
		<script src="js/three.js"></script>
		<script>
var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);

var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// 三角柱をつくる。原点は底面正三角形の重心、柱の高さの半分の位置とする。
// length: 底面の正三角形の辺の長さ
// height: 三角柱の高さ
function createTriangle(length, height)
{

    var faceColor = 0x00ff00;

    var halfHeight = height / 2.0;
    var halfLength = length / 2.0;
    // 正三角形の重心から辺へ下ろした垂線の長さ
    var distanceToLine = halfLength * Math.tan(Math.PI / 6.0);
    // 正三角形の頂点から対辺へ垂線を下ろしたときの、垂線と重心の間の距離
    var distanceFromVertex = halfLength / Math.tan(Math.PI / 6.0) - distanceToLine;

    var vertices = [
        new THREE.Vector3(-halfLength, halfHeight, distanceToLine),   // 上面の三角形の頂点
        new THREE.Vector3(0, halfHeight, -distanceFromVertex),
        new THREE.Vector3(halfLength, halfHeight, distanceToLine),
        new THREE.Vector3(-halfLength, -halfHeight, distanceToLine),   // 下面の三角形の頂点
        new THREE.Vector3(0, -halfHeight, -distanceFromVertex),
        new THREE.Vector3(halfLength, -halfHeight, distanceToLine),
    ];
    var faces = [
        new THREE.Face3(0, 2, 1), // 上面
        new THREE.Face3(3, 4, 5), // 下面
        new THREE.Face3(0, 3, 2), // 手前側面
        new THREE.Face3(2, 3, 5),
        new THREE.Face3(0, 1, 3), // 左側面
        new THREE.Face3(1, 4, 3),
        new THREE.Face3(2, 5, 4), // 右側面
        new THREE.Face3(4, 1, 2),
    ];

    var geometry = new THREE.Geometry();
    var i = 0;
    for (i = 0; i < vertices.length; i++) {
        geometry.vertices.push(vertices[i]);
    }
    for (i = 0; i < faces.length; i++) {
        geometry.faces.push(faces[i]);
    }

    var material = new THREE.MeshBasicMaterial({ color: faceColor });
    // 三角柱のワイヤーフレームを描く
    var wireframeGeometry = new THREE.EdgesGeometry(geometry);
    var wireframeMaterial = new THREE.LineBasicMaterial({ color: 0x000000, linewidth: 2 });

    var triangleMesh = new THREE.Mesh(geometry, material);
    var wireframe = new THREE.LineSegments(wireframeGeometry, wireframeMaterial);

    triangleMesh.add(wireframe);
    return triangleMesh;
}

// x, y, z軸を赤、緑、青で描く
// length: 軸の長さ
function createAxes(length)
{
    var createOneAxis = function (color, vertex) {
        var material = new THREE.LineBasicMaterial({
            color: color
        });
        var vertices = [
            new THREE.Vector3(0, 0, 0),
            vertex
        ];
        var geometry = new THREE.Geometry();
        geometry.vertices = vertices;

        var line = new THREE.Line(geometry, material);
        return line;
    };
    
    
    return [
        createOneAxis(0x770000, new THREE.Vector3(length, 0, 0)),
        createOneAxis(0x007700, new THREE.Vector3(0, length, 0)),
        createOneAxis(0x000077, new THREE.Vector3(0, 0, length))
    ];
    
}

var mesh = createTriangle(10, 20);
scene.add(mesh);
var axes = createAxes(100);
axes.forEach(function (a) { scene.add(a);})

camera.position.z = 30;
camera.position.y = 30;
camera.position.x = 15;
camera.lookAt(0, 0, 0);

function animate() {
	requestAnimationFrame(animate);
	//mesh.rotation.x += 0.01;
	mesh.rotation.y += 0.01;
	renderer.render(scene, camera);
}
animate();
		</script>
	</body>
</html>

上記を適当な名前のhtmlとして保存し、ブラウザで開くとこのように表示されます。
正三角柱はY軸(緑)のまわりを回転します。
image.png

3
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?