20
26

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

scikit-learnのCountVectorizerメモ

Last updated at Posted at 2017-10-02

CountVectorizerのメモ

test.py
from sklearn.feature_extraction.text import CountVectorizer

corpus = ["ああ いい うう", "ああ いい ええ"]

vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
features = vectorizer.get_feature_names()

print(features)

print(type(X))
print(X)
print(X.shape)
print(X.toarray())

出力

['ああ', 'いい', 'うう', 'ええ']
<class 'scipy.sparse.csr.csr_matrix'>
  (0, 2)        1
  (0, 1)        1
  (0, 0)        1
  (1, 3)        1
  (1, 1)        1
  (1, 0)        1
(2, 4) #サンプル数、特徴数
[[1 1 1 0] #ああ いい うう
 [1 1 0 1]] #ああ いい ええ

#transform

corpus = ["ああ いい うう", "ああ いい ええ"]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
features = vectorizer.get_feature_names()

print(features)
print(X.toarray())

new_doc = ["ああ いい うう ええ", "ええ おお"]
new_X = vectorizer.fit_transform(new_doc)

features = vectorizer.get_feature_names()
print(features)
print(new_X.toarray())
['ああ', 'いい', 'うう', 'ええ']
[[1 1 1 0]
 [1 1 0 1]]
['ああ', 'いい', 'うう', 'ええ', 'おお']
[[1 1 1 1 0]
 [0 0 0 1 1]]

#例2
「,」区切りの場合は?

corpus = ["ああ,いい,うう", "ああ,いい,ええ"]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
features = vectorizer.get_feature_names()

print(features)
['ああ', 'いい', 'うう', 'ええ']

「:」区切りの場合は?

corpus = ["ああ:いい:うう", "ああ:いい:ええ"]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
features = vectorizer.get_feature_names()

print(features)
['ああ', 'いい', 'うう', 'ええ']

「、」の区切りは?

corpus = ["ああ、いい、うう", "ああ、いい、ええ"]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
features = vectorizer.get_feature_names()

print(features)
['ああ', 'いい', 'うう', 'ええ']

#tokenizer

tokenizer引数

def tokenize(t):
    print(t)
    return t

corpus = ["ああ、いい、うう", "ああ、いい、ええ"]

vectorizer = CountVectorizer(tokenizer=tokenize)
X = vectorizer.fit_transform(corpus)
features = vectorizer.get_feature_names()

print(features)
ああいいうう
ああいいええ
['', '', '', '', '']
def tokenize(t):
    print(t)
    return t.split('')

corpus = ["ああ猫いい猫うう", "ああ猫いい猫ええ"]
vectorizer = CountVectorizer(tokenizer=tokenize)
X = vectorizer.fit_transform(corpus)
features = vectorizer.get_feature_names()

print(features)
ああ猫いい猫うう
ああ猫いい猫ええ
['ああ', 'いい', 'うう', 'ええ']
def tokenize(t):
    print(t)
    return t

corpus = ["あ、い、う", "あ、い、え"]
vectorizer = CountVectorizer(tokenizer=tokenize)
X = vectorizer.fit_transform(corpus)
features = vectorizer.get_feature_names()

print(features)


['', '', '', '', '']
def tokenize(t):
    print(t)
    return t

corpus = ["あい猫、う", "あ、い、え"]
vectorizer = CountVectorizer(tokenizer=tokenize)
X = vectorizer.fit_transform(corpus)
features = vectorizer.get_feature_names()

print(features)
あい猫

['', '', '', '', '', '']

tokenizerを渡さない場合は?

corpus = ["あい猫、う", "あ、い、え"]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
features = vectorizer.get_feature_names()
['あい猫']
20
26
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
20
26

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?