6
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

ScipyでICA

Last updated at Posted at 2013-12-10

numpyの勉強を兼ねて久しぶりにICAとか書いてみた.
使ってみると,案外arrayやらmatrixやらの取り扱いが面倒ですね.
なんか良い方法はあるんだろうか?

fast_ica.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import scipy as sp
import numpy as np
import matplotlib.pyplot as plt

def g( val, alpha = 0.01 ):
    return np.tanh( alpha * val )

def gd( val, alpha = 0.01 ):
    return alpha * ( 1.0 - np.asarray( np.tanh( alpha * val ) ) )

def sym_orth( sig ):
    a,b,c = np.linalg.svd( sig * sig.T )
    return np.dot( np.dot( a, np.dot( np.diag( np.sqrt( 1./ b ) ), c ) ), sig )

def fast_ica( sig ):
    m,n = sig.shape

    #白色化
    u,s,v = np.linalg.svd( sig, full_matrices=False)
    v = np.sqrt( n ) * v

    #分離フィルタの初期化
    w = np.random.rand( m, m )
    w = w / np.matrix( [ [ np.linalg.norm( w[ :, x ] ) ] * m for x in xrange( m ) ] ).T
    w = sym_orth( w )

    #ICA
    err = 1.0
    it = 0
    max_iter = 3000
    while 1e-12 < min( err , it < max_iter ):
        last_w = w
        w1 =  np.dot( v , g( np.dot( w.T , v ) ).T )
        w2 = np.multiply( np.dot( gd( np.dot( w.T, v ) ), np.ones( (n, 1 ) ) ) , w )
        w = ( w1 - w2 ) / n
        w = sym_orth( w )
        err = np.sum( np.abs( np.abs(w) - np.abs(last_w) ) )
        it += 1

    #0番目の信号のゲインを基準に分離フィルタを作成
    W = np.dot( np.diag( np.ravel( u[0,] ) ), np.dot( np.diag( s ) , w.T ) )
    return np.dot( W, v )  / np.sqrt( n )

def main():
    #スーパーガウシアンな分布だしラプラス分布で
    s = np.random.laplace( 0., 1.0, ( 2, 10000 ) )
    a = np.asmatrix( np.random.rand( 2,2 ) )
    x = a * s
    y = np.asarray( fast_ica( x ) )
    plt.scatter( y[0,], y[1,] )
    plt.show()
    return

if __name__ == '__main__':
    main()
6
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
6
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?