Help us understand the problem. What is going on with this article?

macOS High Sierra 10.13.6 にて eGPU (NVIDIA) を使う

目的は、DeepLearning (cifar10_train.py 動きました)

環境

  • MacBook Pro (15-inch, 2016)
  • macOS High Sierra 10.13.6(17G65)
  • GeForce GTX 1080

私が購入したものは、下記です。
GIGABYTE ビデオカード GTX1080搭載 外付VGA BOX GV-N1080IXEB-8GD

注意

検証は、まだ十分に行なっておりません。
eGPU が認識でき、外部モニターに画面出力できている状態です。
macOS High Sierra 10.13.6(17G3015)で、認識しなくなりました。
(一旦、TimeMachineで戻しました。今の所、17G65 でしか動きません。)

手順

基本的には、下記のスクリプトを使用させていただきました。
https://github.com/learex/macOS-eGPU/tree/master#macos-egpush

  • まずは、バックアップ。(TimeMachineを使用して、現状保存が良いとおもいます。)
  • SIPの無効化。再起動時に command + R で起動させ、 ユーティリティメニューのターミナルを選択し、下記を実行する。
csrutil disable; reboot
  • スクリプト実行
bash <(curl -s https://raw.githubusercontent.com/learex/macOS-eGPU/master/macOS-eGPU.sh)
  • スクリプト実行時のログは、以下です。
    • 2度目の実行なので、ライセンスアグリーメントは、省略。及び、スクリプトの実行のみ。
    • 途中、eGPU の抜き差しの指示があるので、行なってください。
$ macos-egpu 

macOS-eGPU.sh (v1.5)

Accept license terms...                                                 [done]
Killing all other running programs...                                   [OK]
Internet connection established...                                      [YES]
Fetching system information...
   macOS info                                                           [done]
   system integrity protection                                          [done]
   thunderbolt version                                                  [done]
   GPU information                                                      [done]
   installed eGPU software                                              [done]
   installed patches                                                    [done]
   installed programs                                                   [done]
Setting internal switches...
Automatic eGPU information fetching...
   locking script execution                                             [done]
   elevating privileges
   Password:
   checking for elevated privileges                                     [OK]
   preparing secure eGPU connection                                     [done]
   waiting 20 seconds for user to connect eGPU
   20..19..18..17..16..15..14..13..12..11..10..9..8..7..6..5..4..3..2..1..0
   fetching eGPU information                                            [done]
   preparing secure eGPU disconnection                                  [done]
   waiting 20 seconds for user to disconnect eGPU
   20..19..18..17..16..15..14..13..12..11..10..9..8..7..6..5..4..3..2..1..0
   stetting switches                                                    [done]
   opening script execution lock                                        [done]
Fetching CUDA needs...
   fetching CUDA requiring apps list                                    [done]
   preparing matching                                                   [done]
   matching                                                             [done]
Checking for incompatibilies and up to date software...
   NVIDIA drivers                                                       [install scheduled]
   NVIDIA eGPU enabler                                                  [skip, incompatible]
   AMD legacy drivers                                                   [skip]
   T82 unblocker                                                        [skip]
   NVIDIA dGPU deactivator                                              [skip]
   macOS 10.13.4/.5 NVIDIA patch                                        [skip, incompatible]
   macOS 10.13.4+ thunderbolt 1/2 unlock                                [skip, incompatible]
   CUDA software
      CUDA drivers                                                      [skip]
      CUDA developer driver                                             [skip]
      CUDA toolkit                                                      [skip]
      CUDA samples                                                      [skip]
   thunderbolt daemon                                                   [skip]
   IO PCIE Tunnelled patch                                              [install scheduled]
Checking if SIP is sufficently disabled...                              [OK]

Download external content...
--- NVIDIA drivers ---
######################################################################## 100.0%

Checking for elevated privileges...

Uninstalling...
Installing...
   NVIDIA driver                                                        [done]
   IO PCIE Tunnelled patch                                              [done]
Patching...
deactivating auto-updates...

Finish...
   cleaning system                                                      [done]
Rebuilding caches
   kext cache                                                           [done]
   system cache                                                         [done]
A reboot will soon be performed...
5..4..3..2..1..0
reboot: / is busy updating, waiting for lock (this might take approx 15-30s)...
reboot: / is busy updating; waiting for lock

結果

スクリーンショット 2018-08-19 15.49.11.png
スクリーンショット 2018-08-19 15.49.50.png
スクリーンショット 2018-08-19 15.50.06.png

おまけ

tensorflow r1.10 を最新CUDAの仕様でコンパイルに成功しました。

python 3.6.6
CUDA Toolkit 10.0
cuDNN v7.3.1 (Sept 28, 2018), for CUDA 10.0
TF_NCCL_VERSION 2.3.5

作成したパッケージです。
tensorflow-1.10.1-cp36-cp36m-macosx_10_13_x86_64.whl

CPU 版に比べて、6倍くらいの処理スピードです。(こんなもんなのですかね?)

python cifar10_train.py 
Filling queue with 20000 CIFAR images before starting to train. This will take a few minutes.
2018-10-05 23:04:13.815498: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:858] OS X does not support NUMA - returning NUMA node zero
2018-10-05 23:04:13.815687: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0 with properties: 
name: GeForce GTX 1080 major: 6 minor: 1 memoryClockRate(GHz): 1.7335
pciBusID: 0000:46:00.0
totalMemory: 8.00GiB freeMemory: 5.71GiB
2018-10-05 23:04:13.815706: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible gpu devices: 0
2018-10-05 23:04:14.187784: I tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-10-05 23:04:14.187826: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971]      0 
2018-10-05 23:04:14.187831: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0:   N 
2018-10-05 23:04:14.188000: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5481 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080, pci bus id: 0000:46:00.0, compute capability: 6.1)
2018-10-05 23:04:17.923348: step 0, loss = 4.68 (139.6 examples/sec; 0.917 sec/batch)
2018-10-05 23:04:18.492055: step 10, loss = 4.60 (2250.7 examples/sec; 0.057 sec/batch)
2018-10-05 23:04:18.914545: step 20, loss = 4.62 (3029.7 examples/sec; 0.042 sec/batch)
2018-10-05 23:04:19.332597: step 30, loss = 4.60 (3061.8 examples/sec; 0.042 sec/batch)
2018-10-05 23:04:19.756255: step 40, loss = 4.38 (3021.3 examples/sec; 0.042 sec/batch)
2018-10-05 23:04:20.198415: step 50, loss = 4.42 (2894.9 examples/sec; 0.044 sec/batch)
2018-10-05 23:04:20.622042: step 60, loss = 4.40 (3021.5 examples/sec; 0.042 sec/batch)
2018-10-05 23:04:21.040028: step 70, loss = 4.21 (3062.3 examples/sec; 0.042 sec/batch)
2018-10-05 23:04:21.449060: step 80, loss = 4.19 (3129.3 examples/sec; 0.041 sec/batch)
2018-10-05 23:04:21.868983: step 90, loss = 4.12 (3048.2 examples/sec; 0.042 sec/batch)
2018-10-05 23:04:22.424941: step 100, loss = 4.13 (2302.3 examples/sec; 0.056 sec/batch)
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした