0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

周波数伝達関数のs=jwの意味

Last updated at Posted at 2021-12-28

はじめに

初めて制御工学を習ったとき、伝達関数$G(s)$に$s=jw$を代入すれば、周波数伝達関数だ!と教えられました。その時は、あまり深く考えずそんなもんかと思っていましたが、ふと最近考えてみてその理由が分かった気がするので書いておきます。

s=jwの理由

伝達関数$G(s)$の$s$に$jw$を代入すると考えるから、理解が出来ていなかった気がします。この$s$が$G(s)$$=Y(s)/U(s)$の入力$U(s)$の$s$に代入されたものと考えればすっきりしました。

周波数伝達関数はそのシステムの周波数特性、ボード線図を知るために用いられます。そのとき、入力としてある周波数$w$の正弦波を入れます。この入力の正弦波の作成用に$\ddot{u}+w^2u=0$という単振動の系を考えたとき、その固有値$s$が$jw$だったのです。こう考えると、$U(s)$に$s=jw$を代入することによって、入力として周波数$w$の正弦波が生成されます。そして線形性により、出力も周波数$w$の正弦波となります。つまり、$Y(s)$にも$jw$が代入されたことになります。それらをまとめると結局は$G(s)$に$s=jw$を代入すれば周波数特性が分かる。つまり$G(jw)$が周波数伝達関数だ、ということで腑に落ちました。

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?