14
21

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

pandasの時系列データ処理で累積和を一定期間毎に算出する方法

Last updated at Posted at 2018-11-29

pandasで時系列データなどの分析を行なう際、日毎や分毎などで累積和を算出したいケースがあると思います。

例えば、以下のような1ヵ月分のティックデータを1Tでresamplingしたohlcvに変換したいとします。
スクリーンショット 2018-11-30 2.35.31.png

そこで、以下のような処理でcode毎のohlcvを作成します。

def gen_ohlcv_df(code):
    df_ohlcv_code = df[df['code'] == code]
    df_ohlcv_code = df_ohlcv_code.set_index('date')
    df_ohlcv_code = pd.concat([df_ohlcv_code['Price'].resample('T').ohlc(),
                               df_ohlcv_code['Trading volume'].resample('T').sum()], axis=1)
    return df_ohlcv_code

当然当該時刻にデータがない場合は欠損値になります。

スクリーンショット 2018-11-30 2.52.27.png

ここで欠損値は直前の値で補間したいと思います。

def gen_ohlcv_df(code):
    df_ohlcv_code = df[df['code'] == code]
    df_ohlcv_code = df_ohlcv_code.set_index('date')
    df_ohlcv_code = pd.concat([df_ohlcv_code['Price'].resample('T').ohlc(),
                               df_ohlcv_code['Trading volume'].resample('T').sum()], axis=1)
    df_ohlcv_code = df_ohlcv_code.reset_index()
    
    # 欠損値を直前のデータで補間する
    df_ohlcv_code = df_ohlcv_code.interpolate(method='zero')
    
    return df_ohlcv_code

ohlcは良い感じになりました。
ここで、volumeは日毎の累積和で表示したいとします。

スクリーンショット 2018-11-30 2.59.54.png

ところが、単純にcumsum()を当てると以下のように、volumeが全期間の累積和となってしまいます。

def gen_ohlcv_df(code):
    df_ohlcv_code = df[df['code'] == code]
    df_ohlcv_code = df_ohlcv_code.set_index('date')
    df_ohlcv_code = pd.concat([df_ohlcv_code['Price'].resample('T').ohlc(),
                               df_ohlcv_code['Trading volume'].resample('T').sum()], axis=1)
    df_ohlcv_code = df_ohlcv_code.reset_index()
    
    # Trading volumeの累積和をとる
    df_ohlcv_code['Trading volume'] = df_ohlcv_code['Trading volume'].cumsum()
    
    # 欠損値を直前のデータで補間する
    df_ohlcv_code = df_ohlcv_code.interpolate(method='zero')
    
    return df_ohlcv_code
スクリーンショット 2018-11-30 3.05.03.png スクリーンショット 2018-11-30 3.05.08.png

volumeは日毎にリセットして累積和を算出したいので、datetimeから暫定的に日付データのみのカラムを作成してgroupbyしてやることで解決します。

def gen_ohlcv_df(code):
    df_ohlcv_code = df[df['code'] == code]
    df_ohlcv_code = df_ohlcv_code.set_index('date')
    df_ohlcv_code = pd.concat([df_ohlcv_code['Price'].resample('T').ohlc(),
                               df_ohlcv_code['Trading volume'].resample('T').sum()], axis=1)
    df_ohlcv_code = df_ohlcv_code.reset_index()
    
    # groupbyのためのdayカラムを一時的に追加
    df_ohlcv_code['day'] = df_ohlcv_code['date'].map(lambda x: x.day)
    
    # 日単位でTrading volumeの累積和をとる
    df_ohlcv_code['Trading volume'] = df_ohlcv_code.groupby(['day'])['Trading volume'].cumsum()
    
    # dayカラムを削除
    df_ohlcv_code = df_ohlcv_code.drop('day', axis=1)
    
    # 欠損値を直前のデータで補間する
    df_ohlcv_code = df_ohlcv_code.interpolate(method='zero')
    
    return df_ohlcv_code

累積和を日毎に算出することができました。
スクリーンショット 2018-11-30 3.14.10.png

groupbyするデータを分や秒、週にする場合などは x.day の部分を x.minute などに適宜変更することで対応できます。

14
21
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
14
21

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?