0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

タブーサーチ(TS)で解くOneMax問題をJavaScriptで書いてみた

Posted at

※個人の練習用です。アルゴリズムの正確性は担保しません。
ここでいうTSは、タブーサーチ(Tabu Search)のことです。

タブーサーチ(TS)とは

メタヒューリスティックの探索アルゴリズムの一つである。
TSに関する説明はWikiまたはこちらのレビュー論文に割愛する。

JSで書いてみた

TSは探索アルゴリズムの中でも割とシンプルなものなので、
JSでも簡単に書ける。

// タブーリストの長さを設定
const TABU_LIST_MAX_LENGTH = 7;
// One-Max 問題の長さを設定
const ARRAY_WIDTH = 100; //e.g. 4 = [0, 0, 0, 0]
// One-Max なので値は2種類(0,1)
const VALUE_LENGTH = 2; // 0 || 1
// 最大探索回数
const MAX_COUNT = 100;
// 一回あたりの探索区間
const SEARCH_WIDTH = 1;
// 近隣の数
const NEIGHBORS_LENGTH = 10;
// 初期値生成
const INITIAL_VALUE = setValue(VALUE_LENGTH, ARRAY_WIDTH);

console.log("The max width is: ", ARRAY_WIDTH);
console.log("The first value is: ", INITIAL_VALUE);
console.log("The sum of first value is: ", sum(INITIAL_VALUE));

// FIFO
function fifo(tabuList, newAns){
    if(tabuList.length >= TABU_LIST_MAX_LENGTH){
        tabuList.shift() | tabuList.push(newAns);
    }else{
        tabuList.push(newAns);
    }
    console.log("The new tabu list is: ", tabuList);
    return tabuList;
}

function getMaxFromArray(arr){
    return Math.max.apply(null, arr);
}

function getMaxFromNeighborsArr(neighborsArr){
    maxCallback = (max, cur) => Math.max(max , cur);
    return neighborsArr.map(x=>sum(x)).reduce(maxCallback, -Infinity);
}

function getMaxNeighbor(neighbors){
    maxValue = getMaxFromNeighborsArr(neighbors);
    return neighbors.find(neighbor => sum(neighbor) == maxValue);
}

function getBestFromTabuList(tabuList){
    return getMaxFromArray(tabuList);
}

function getWideRandom(max, width){
    let result = [];
    for(let i=width; i>0; i--){
        let num = getRandom(max);
        if(result.includes(num)){
            i++;
        }else{
            result.push(num);
        }
    }
    return result;
}

function getRandom(max){
    return Math.floor(Math.random()*Math.floor(max));
}

function setValue(num, width){
    let result = []
    for(let i=0; i< width; i++){
        result.push(getRandom(num));
    };
    return result;
}

function toggle(num){
    return num == 0 ? 1 : 0;
}

function wideToggle(newAns, posArr){
    posArr.forEach(pos => {
        newAns[pos] = toggle(newAns[pos]);
    })
    return newAns;
}

function sum(valueArr){
    return valueArr.reduce(function(sum, val){
            return sum + val;
        }, 0);
}

function pickNeighbors(currentAns, length){
    let neighbors = [];
    for(let i=length; i>0; i--){
        let neighborArr = Array.from(currentAns);
        let posArr = getWideRandom(ARRAY_WIDTH, SEARCH_WIDTH);
        neighborArr = wideToggle(neighborArr, posArr);
        neighbors.push(neighborArr);
    }
    return neighbors;
}

function pickNeighbor(newAns, neighborsLength){
    neighbors = pickNeighbors(newAns, neighborsLength);
    return getMaxNeighbor(neighbors);
}

function hasValueInTabuList(tabuList, newAns){
    return tabuList.includes(answer => answer == newAns) === true;
}

function compareAnswers(oldAnsArr, newAnsArr, tabuList){
    return sum(newAnsArr) > sum(oldAnsArr) && hasValueInTabuList(tabuList, sum(newAnsArr)) === false;
}

// メイン関数
function find(start){
    let tabuList = [sum(start)];
    let latestAns = Array.from(start);

    for(let i=0;i<MAX_COUNT;i++){
        console.log("Count: ", i);
        let tempNeighbor = pickNeighbor(latestAns, NEIGHBORS_LENGTH);
        console.log("The sum of best neighbor's value is: ", sum(tempNeighbor));

        if(compareAnswers(latestAns, tempNeighbor, tabuList)){
            console.log("Add into tabu list cuz NEW VALUE more then OLD VALUE");
            tabuList = fifo(tabuList, sum(tempNeighbor));
            latestAns = Array.from(tempNeighbor);
        }
    }
    return  getBestFromTabuList(tabuList);
}

// 実行
console.log("the best answer is:",find(INITIAL_VALUE));
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?