LoginSignup
0
1

ニュートン補間法によるチェビシェフ補間のPython実装

Last updated at Posted at 2024-06-01

参考文献

数値計算の基礎と応用[新訂版]
数値解析学への入門
杉浦 洋(南山大学教授) 著
発行日 2009/12/10

参考ページ

準備

オンラインコンパイラを使用します。

ソースコード

sample.py
# -*- coding: utf-8 -*-
import numpy as np

def p(x, n, xi, b):
    y = b[n]
    for l in range(n-1, -1, -1):
        y = (x - xi[l]) * y + b[l]
    return y

def f(x):
    return np.exp(x)

def NewtonCoef(xi, m, b):
    for n in range(m+1):
        b[n] = f(xi[n])
        for l in range(n):
            b[n] = (b[n] - b[l]) / (xi[n] - xi[l])
    return 0

def main():
    m = 7
    Pi = np.pi
    dt = Pi / (m + 1)
    xi = [0.5 * np.cos((i + 0.5) * dt) for i in range(m+1)]
    b = [0] * (m+1)
    NewtonCoef(xi, m, b)
    print("degree={}".format(m))
    npoints = 10
    dx = 1.0 / npoints
    for i in range(npoints+1):
        x = -0.5 + i * dx
        y = p(x, m, xi, b)
        print("p({:4.1f})={:17.10e} error={:9.2e}".format(x, y, y - np.exp(x)))

main()

実行結果

console
degree=7
p(-0.5)= 6.0653065899e-01 error=-7.21e-10
p(-0.4)= 6.7032004573e-01 error=-3.07e-10
p(-0.3)= 7.4081822037e-01 error=-3.11e-10
p(-0.2)= 8.1873075381e-01 error= 7.36e-10
p(-0.1)= 9.0483741807e-01 error= 3.02e-11
p( 0.0)= 9.9999999924e-01 error=-7.61e-10
p( 0.1)= 1.1051709181e+00 error= 3.08e-11
p( 0.2)= 1.2214027589e+00 error= 7.70e-10
p( 0.3)= 1.3498588072e+00 error=-3.32e-10
p( 0.4)= 1.4918246973e+00 error=-3.36e-10
p( 0.5)= 1.6487212699e+00 error=-8.06e-10

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1