0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

QC検定 ー 確率分布

Posted at

確率分布の一覧

分類 名称   表記   期待値   分散   確率密度関数 累積分布関数
連続型 正規分布 $ N(\mu,\sigma^2) $ $\mu$ $\sigma^2$ $\frac{1}{\sqrt{2\pi}\sigma}exp\bigl( -\frac{(x-\mu)^2}{2\sigma^2} \bigr)$ $\frac{1}{\sqrt{2\pi}\sigma}\int_{\infty}^{x} exp\bigl( -\frac{(x-\mu)^2}{2\sigma^2} \bigr)dx$
連続型 標準正規分布 $N(0,1^2)$ $0$ $1^2$ $\frac{1}{\sqrt{2\pi}}exp\bigl( -\frac{x^2}{2} \bigr)$ $\frac{1}{\sqrt{2\pi}}\int_{\infty}^{x} exp\bigl( -\frac{x^2}{2} \bigr)dx$
連続型 指数分布 $Ex(\lambda)$ $\frac{1}{\lambda}$ $\frac{1}{\lambda^2}$ $\lambda exp(-\lambda x),x>0$ $1-exp(-\lambda x),x>0$
連続型 一様分布 $U(a,b)$ $\frac{a+b}{2}$ $\frac{(b-a)^2}{12}$ $ \frac{1}{b-a} , a \le x \le b $
$0 , x < a , x > b$
$\frac{x-a}{b-a},a \le x \le b $
$0 , x < a$
$ 1 , x > b $
離散型 二項分布 $B(n,p)$
$Bi(np,)$
$np$ $np(1-p)$ ${}_n \mathrm{C}_xp^x(1-p)^{n-x}$ $\sum_{i=0}^x {}_n\mathrm{C}_ip^i(1-p)^{n-i}$
離散型 ポアソン分布 $P_0(\lambda)$ $\lambda$ $\lambda$ $ exp(-\lambda) \frac{\lambda^x}{x!} $ $ \sum_{i=0}^x exp(-\lambda) \frac{\lambda^i}{i!} $
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?