35
36

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

numpy・scipyでマルチスレッドBLAS・LAPACKを使う

Last updated at Posted at 2015-02-11

前に書いた記事 で,python・numpy・scipyをrootを取らずにソースからインストールする方法について述べた.

しかし,上記の方法は以下の問題点がある.

  • 遅い.
  • すごく遅い.
  • とてつもなく遅い.

BLASやLAPACKがマルチスレッド対応になっていないのがその原因.Intel MKLを買うほどお金もないので,OpenBLASを使うことにする.

参考記事は以下の2つ.

OpenBLAS

SurviveGotoBLASを使う.まずはスタティックライブラリのビルド.

# wget http://prs.ism.ac.jp/~nakama/SurviveGotoBLAS2/SurviveGotoBLAS2_3.14.tar.gz
# tar xzf SurviveGotoBLAS2_3.14.tar.gz
# cd survivegotoblas2_3.14
# vim Makefile.rule
TARGET=X86_64
BINARY=64
USE_THREAD=1
USE_OPENMP=1
NUM_THREADS=12    # CPUの数に応じて調節する
NO_CBLAS=1    # CBLASはあとでビルドする
NO_LAPACK=1    # LAPACKもあとでビルドする
# make all -j 4
# cp libgoto2.a ~/lib    # 永続的に残す場所(ここでは~/lib)へコピー

Theanoのようにダイナミックリンクライブラリを要求するパッケージもあるので,.soも作る.

# mkdir tmp
# cd tmp
# cp ../libgoto2.a .
# ar -x libgoto2.a    # .aを.oに分解
# gfortran -shared -lpthread -lgomp  -o libgoto2.so *.o
# cp libgoto2.so ~/lib    # 永続的に残す場所へコピー
# export BLAS=~/lib/libgoto2.so    # なくても良いかも

CBLAS

SurviveGotoBLASに入っているものを使っても良いが,ここでは自分でビルドする.先ほどビルドしたBLASを忘れずにCBLASビルド時に指定..soを作るところ(下から2行目)で忘れがちになるので,要注意.

# wget http://www.netlib.org/blas/blast-forum/cblas.tgz
# tar xzf cblas.tgz
# cd CBLAS
# cp Makefile.LINUX Makefile.in
# vim Makefile.in
BLLIB = ~/lib/libgoto2.a    # ここでBLASを参照
CBLIB = ../lib/libcblas.a    # CBLASの出力先
LOADER = $(FC) -lpthread
CFLAGS = -O3 -m64 -fPIC -DADD_
FFLAGS = -O3 -m64 -fPIC
# make all -j 4
# cp lib/libcblas.a ~/lib    # 永続的に残す場所へコピー
# gfortran -L${HOME}/lib -lgoto2 -shared -o libcblas.so *.o
# cp libcblas.so ~/lib    # 永続的に残す場所へコピー

LAPACK

これも自分でビルドする.これまでに作ったライブラリをLAPACKビルド時に指定.

# wget http://www.netlib.org/lapack/lapack.tgz
# tar xzf lapack.tgz
# cd lapack
# cp INSTALL/make.inc.gfortran make.inc
# vi make.inc
OPTS =  -O3 -m64 -fPIC
NOOPT = -O0 -m64 -fPIC
LOADOPTS = -L${HOME}/lib -lgoto2 -lcblas
# make lapacklib -j 4
# cp liblapack.a ~/lib    # 永続的に残す場所へコピー
# mkdir tmp
# cd tmp
# cp ../liblapack.a .
# ar -x liblapack.a    # .aを.oに分解
# gfortran -L${HOME}/lib -lgoto2 -lcblas -shared -o liblapack.so *.o
# cp liblapack.so ~/lib
# export LAPACK=~/lib/liblapack.so    # なくても良いかも

Numpy

ビルド前にsite.cfgを編集して,そこでBLAS,LAPACKを参照させることがポイント.

# wget http://sourceforge.net/projects/numpy/files/NumPy/1.9.0/numpy-1.9.0.tar.gz/download --no-check-certificate
# tar xzf numpy-1.9.0.tar.gz
# cd numpy-1.9.0
# cp site.cfg.example site.cfg
# vim site.cfg
[DEFAULT]
library_dirs = ${HOME}/lib
[atlas]
atlas_libs = goto2,cblas
# python setup.py build
# python setup.py install

ちゃんと動いているかどうか,念のためテスト.たぶんここではエラーは出ないはず.

# python -c "import numpy; numpy.test(verbose=2)"

ここにあるテストスクリプトを走らせて,速度を確認してみると良いかもしれない.

# python test_numpy.py

Scipy

# wget http://sourceforge.net/projects/scipy/files/scipy/0.14.0/scipy-0.14.0.tar.gz/download
# tar xzvf scipy-0.14.0.tar.gz
# cd scipy-0.14.0
# vim site.cfg
[DEFAULT]
library_dirs = ${HOME}/lib
[atlas]
atlas_libs = lapack,goto2,cblas

ここで,scipy/lib/lapack/__init__.pyを以下のように書き換える.

(旧)

__init_old__.py
from scipy.linalg import flapack
from scipy.linalg import clapack
_use_force_clapack = 1
if hasattr(clapack,'empty_module'):
    clapack = flapack
    _use_force_clapack = 0
elif hasattr(flapack,'empty_module'):
    flapack = clapack''

(新)

__init__.py
from scipy.linalg import flapack
clapack = flapack
_use_force_clapack = 0

最後にビルドインストールして終わり.

# python setup.py build
# python setup.py install

こちらもテストをしてみる.たまに失敗するかもしれないけれども,

# python -c "import numpy; numpy.test(verbose=2)"
35
36
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
35
36

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?