0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

Gemini 2.0 Flash Thinking Experimentalに東大理系数学を解かせてみた

Posted at

サマリ

OpenAIが突如として、発表を連発して、o1リリース&ChatGPTPro(3万円/月)でより深い推測ができるという発表をした。

Geminiでも試したが能力は十分で速いので貧乏人はGeminiでいいよ。

ChatGPTo1 Proに東大理系数学を解かせたという興味深い記事を見つけた。

  • ChatGPT o1 Proは東大の数学が解けるらしい。
  • 庶民にはo1 ProはないがGoogle Geminiがある! Gemini で同じ条件で確認するぞ!
  • (今は無料の)Gemini 2.0 Flash Thinkingでも解ける。さすがGoogle!

問題1

Geminiへの出題方法

インプットに左右されないように画像入力&プロンプトも合わせた

image.png

思考過程

- 思考過程詳細(10.5秒)
    
    Thoughts
    
    *The thoughts produced by the model are experimental
    
    experiment
    
    ユーザーのリクエストは、与えられた条件を満たす点Pの範囲をxy平面上に図示することです。条件は3つあります。
    
    1. Pは原点Oと異なる。
    2. ∠AOP ≧ (2/3)π
    3. ∠OAP ≦ π/6
    
    まず、点Aの座標は(0, -1, 1)です。点Pはxy平面上の点なので、そのz座標は0です。点Pの座標を(x, y, 0)とします。
    
    条件(i)より、(x, y) ≠ (0, 0)です。
    
    条件(ii)について考えます。∠AOPはベクトルOAとベクトルOPのなす角です。
    
    OA = (0, -1, 1)
    
    OP = (x, y, 0)
    
    内積 OA・OP = 0*x + (-1)*y + 1*0 = -y
    
    |OA| = √(0^2 + (-1)^2 + 1^2) = √2
    
    |OP| = √(x^2 + y^2 + 0^2) = √(x^2 + y^2)
    
    cos∠AOP = (OA・OP) / (|OA||OP|) = -y / (√2 * √(x^2 + y^2))
    
    ∠AOP ≧ (2/3)πなので、cos∠AOP ≦ cos(2/3)π = -1/2
    
    - y / (√2 * √(x^2 + y^2)) ≦ -1/2
    
    y / (√2 * √(x^2 + y^2)) ≧ 1/2
    
    2y ≧ √2 * √(x^2 + y^2)
    
    両辺を2乗して、4y^2 ≧ 2(x^2 + y^2)
    
    2y^2 ≧ x^2 + y^2
    
    y^2 ≧ x^2
    
    |y| ≧ |x|
    
    さらに、cos∠AOP が負なので、∠AOP は鈍角であり、y は正である必要があります。したがって、y ≧ |x|。これは、直線 y=x と y=-x の間の領域で、y軸より上の部分です。
    
    条件(iii)について考えます。∠OAPはベクトルAOとベクトルAPのなす角です。
    
    AO = (0, 1, -1)
    
    AP = (x, y+1, -1)
    
    内積 AO・AP = 0*x + 1*(y+1) + (-1)*(-1) = y + 1 + 1 = y + 2
    
    |AO| = √2
    
    |AP| = √(x^2 + (y+1)^2 + (-1)^2) = √(x^2 + y^2 + 2y + 1 + 1) = √(x^2 + y^2 + 2y + 2)
    
    cos∠OAP = (AO・AP) / (|AO||AP|) = (y+2) / (√2 * √(x^2 + y^2 + 2y + 2))
    
    ∠OAP ≦ π/6なので、cos∠OAP ≧ cos(π/6) = √3/2
    
    (y+2) / (√2 * √(x^2 + y^2 + 2y + 2)) ≧ √3/2
    
    2(y+2) ≧ √6 * √(x^2 + y^2 + 2y + 2)
    
    両辺を2乗して、4(y+2)^2 ≧ 6(x^2 + y^2 + 2y + 2)
    
    4(y^2 + 4y + 4) ≧ 6x^2 + 6y^2 + 12y + 12
    
    4y^2 + 16y + 16 ≧ 6x^2 + 6y^2 + 12y + 12
    
    0 ≧ 6x^2 + 2y^2 - 4y - 4
    
    3x^2 + y^2 - 2y - 2 ≦ 0
    
    3x^2 + (y-1)^2 - 1 - 2 ≦ 0
    
    3x^2 + (y-1)^2 ≦ 3
    
    x^2 / 1 + (y-1)^2 / 3 ≦ 1
    
    これは、中心が(0, 1)、x軸方向の半径が1、y軸方向の半径が√3の楕円の内部(境界を含む)です。
    
    条件(ii)から得られた領域は y ≧ |x| かつ y>0。
    
    条件(iii)から得られた領域は楕円の内部。
    
    条件(i)から、原点を除く。
    
    したがって、求める領域は、y ≧ |x| かつ y>0 の領域と、楕円 x^2 / 1 + (y-1)^2 / 3 ≦ 1 の共通部分から原点を除いた領域です。
    
    図示する際には、まず直線 y=x, y=-x を描き、y軸より上の領域で、これらの直線に挟まれた部分を塗ります。次に、中心(0, 1)、x軸方向の半径1、y軸方向の半径√3の楕円を描きます。最後に、両方の領域の重なる部分を特定し、原点を除外します。
    

解答:

image 1.png

あってる(っぽい)

問題2

Geminiへの出題方法

正確なプロンプロは不明なため、問題1と合わせた形式で依頼した。

image 2.png

思考過程

- 思考過程(17.5秒)
    
    Thoughts
    *The thoughts produced by the model are experimental
    experiment
    
    The request is to solve a calculus problem. Let's break it down step by step.
    
    Part 1: Finding α such that f'(tan α) = 0
    
    Differentiate f(x): The function f(x) involves an absolute value within an integral. We need to handle this carefully. The absolute value |t-x| can be split into two cases: t-x when t >= x, and x-t when t < x. This split depends on the relationship between t (the integration variable) and x (the variable of the function).
    
    Case 1: 0 ≤ x ≤ 1: The integration range is 0 to 1. We need to split the integral based on whether t is less than or greater than x.
    f(x) = ∫[0, x] (x-t)/(1+t^2) dt + ∫[x, 1] (t-x)/(1+t^2) dt
    
    Calculate the integrals:
    ∫ (x-t)/(1+t^2) dt = x ∫ 1/(1+t^2) dt - ∫ t/(1+t^2) dt = x arctan(t) - (1/2)ln(1+t^2) + C
    ∫ (t-x)/(1+t^2) dt = ∫ t/(1+t^2) dt - x ∫ 1/(1+t^2) dt = (1/2)ln(1+t^2) - x arctan(t) + C
    
    Evaluate the definite integrals:
    ∫[0, x] (x-t)/(1+t^2) dt = [x arctan(t) - (1/2)ln(1+t^2)] from 0 to x = x arctan(x) - (1/2)ln(1+x^2)
    ∫[x, 1] (t-x)/(1+t^2) dt = [(1/2)ln(1+t^2) - x arctan(t)] from x to 1 = (1/2)ln(2) - x arctan(1) - [(1/2)ln(1+x^2) - x arctan(x)] = (1/2)ln(2) - πx/4 - (1/2)ln(1+x^2) + x arctan(x)
    
    Combine the results to get f(x):
    f(x) = x arctan(x) - (1/2)ln(1+x^2) + (1/2)ln(2) - πx/4 - (1/2)ln(1+x^2) + x arctan(x)
    f(x) = 2x arctan(x) - ln(1+x^2) + (1/2)ln(2) - πx/4
    
    Differentiate f(x) with respect to x:
    f'(x) = 2 arctan(x) + 2x * (1/(1+x^2)) - (2x/(1+x^2)) - π/4
    f'(x) = 2 arctan(x) - π/4
    
    Set f'(tan α) = 0:
    2 arctan(tan α) - π/4 = 0
    Since 0 < α < π/4, arctan(tan α) = α.
    2α - π/4 = 0
    2α = π/4
    α = π/8
    
    Part 2: Find tan α
    
    Since we found α = π/8 in part 1, we need to calculate tan(π/8).
    
    We can use the half-angle formula for tangent: tan(θ/2) = (1 - cos θ) / sin θ.
    Let θ = π/4. Then cos(π/4) = √2/2 and sin(π/4) = √2/2.
    tan(π/8) = (1 - √2/2) / (√2/2) = (2 - √2) / √2 = √2 - 1
    
    Part 3: Find the maximum and minimum values of f(x) in the interval 0 ≤ x ≤ 1
    
    Critical points: We know f'(x) = 2 arctan(x) - π/4. We set f'(x) = 0 to find critical points.
    2 arctan(x) - π/4 = 0
    arctan(x) = π/8
    x = tan(π/8) = √2 - 1
    
    Evaluate f(x) at the critical point and endpoints:
    Endpoints: x = 0 and x = 1.
    Critical point: x = √2 - 1.
    
    Calculate f(0):
    f(0) = 2(0)arctan(0) - ln(1+0^2) + (1/2)ln(2) - π(0)/4 = 0 - 0 + (1/2)ln(2) - 0 = (1/2)ln(2)
    
    Calculate f(1):
    f(1) = 2(1)arctan(1) - ln(1+1^2) + (1/2)ln(2) - π(1)/4
    f(1) = 2(π/4) - ln(2) + (1/2)ln(2) - π/4
    f(1) = π/2 - ln(2) + (1/2)ln(2) - π/4
    f(1) = π/4 - (1/2)ln(2)
    
    Calculate f(√2 - 1):
    Let x = tan(π/8).
    f(tan(π/8)) = 2 tan(π/8) arctan(tan(π/8)) - ln(1+tan^2(π/8)) + (1/2)ln(2) - π tan(π/8)/4
    f(tan(π/8)) = 2 (√2 - 1) (π/8) - ln(1+(√2 - 1)^2) + (1/2)ln(2) - π (√2 - 1)/4
    f(tan(π/8)) = (√2 - 1)π/4 - ln(1 + 2 - 2√2 + 1) + (1/2)ln(2) - (√2 - 1)π/4
    f(tan(π/8)) = - ln(4 - 2√2) + (1/2)ln(2)
    f(tan(π/8)) = - ln(2(2 - √2)) + (1/2)ln(2)
    f(tan(π/8)) = - (ln(2) + ln(2 - √2)) + (1/2)ln(2)
    f(tan(π/8)) = -ln(2) - ln(2 - √2) + (1/2)ln(2)
    f(tan(π/8)) = - (1/2)ln(2) - ln(2 - √2)
    
    Compare the values:
    f(0) = (1/2)ln(2)
    f(1) = π/4 - (1/2)ln(2)
    f(√2 - 1) = - (1/2)ln(2) - ln(2 - √2)
    
    We are given 0.69 < ln 2 < 0.7. So 0.345 < (1/2)ln 2 < 0.35.
    π/4 ≈ 3.14 / 4 = 0.785.
    f(0) is positive.
    f(1) = 0.785 - (0.345 to 0.35) which is positive.
    f(√2 - 1) = - (0.345 to 0.35) - ln(2 - 1.414) = - (0.345 to 0.35) - ln(0.586). Since 0 < 0.586 < 1, ln(0.586) is negative. So f(√2 - 1) is negative.
    
    Maximum value is either f(0) or f(1).
    f(0) = (1/2)ln(2)
    f(1) = π/4 - (1/2)ln(2)
    Compare (1/2)ln(2) and π/4 - (1/2)ln(2).
    Compare ln(2) and π/4.
    Since ln(2) ≈ 0.693 and π/4 ≈ 0.785, π/4 > ln(2).
    So π/4 - (1/2)ln(2) > (1/2)ln(2).
    Maximum value is f(1) = π/4 - (1/2)ln(2).
    
    Minimum value is f(√2 - 1) = - (1/2)ln(2) - ln(2 - √2).
    
    Final check of calculations.
    

解答:

あってますね…(2)がtanαの値をもとめよとあるので、解としてtanα=…と書いてくれた方がすっきりはしますが。

image 3.png

uploading...0

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?