Claude 3.7ã§çšŒãïŒAIã䜿ã£ãããã°ã©ããŒåã坿¥ã¢ã€ãã¢ãšåçåã®ã³ãð¡
ããã«ã¡ã¯ã@YushiYamamotoã§ãïŒæè¿ã®AIæè¡ã®é²åã¯ç®èŠãŸãããç¹ã«Anthropicã2025幎2æã«ãªãªãŒã¹ããClaude 3.7 Sonnetã¯ãç§ãã¡ãšã³ãžãã¢ã«ãšã£ãŠæ°ããªå¯èœæ§ãéããŠããŸãã
ä»åã¯ããã®ãã¯ãã«ãªAIããŒã«ã掻çšããŠå¯åå
¥ãåŸãæ¹æ³ã«ã€ããŠãå®è·µçãªã¢ã€ãã¢ãšå
·äœçãªå®è£
æ¹æ³ãã玹ä»ããŸãã
Claude 3.7 Sonnetã®ç¹åŸŽãšåŒ·ã¿
Claude 3.7 Sonnetã¯ãåããŒãžã§ã³ã®Claude 3.5ãšæ¯èŒããŠå€§å¹ ãªæ§èœåäžãéããŠããŸããç¹ã«æ³šç®ãã¹ãç¹ã¯ä»¥äžã®éãã§ãïŒ
- ã³ãŒãã£ã³ã°æ§èœã®é£èºçåäž: SWE-bench Verifiedã§62.3%ã®ç²ŸåºŠã¹ã³ã¢ãéæïŒClaude 3.5ã®49.0%ããå€§å¹ ã¢ããïŒ
- æå€§128KåºåããŒã¯ã³å¯Ÿå¿: 以åã®15å以äžã®é·ãã®åºåãå¯èœã«ãªããè€éãªã³ãŒãçæã«æé©
- ãšãŒãžã§ã³ãçããŒã«äœ¿çš: å°å£²é¢é£ã¿ã¹ã¯ã§81.2%ãèªç©ºé¢é£ã¿ã¹ã¯ã§58.4%ã®ç²ŸåºŠãå®çŸ
ãããã®æ©èœåŒ·åã«ãããClaude 3.7ã¯OpenAIã®o1ïŒ48.9%ïŒãDeepSeek R1ïŒ49.2%ïŒãšãã£ãç«¶åã¢ãã«ã倧ããäžåãæ§èœãçºæ®ããŠããŸã[2]ã
ã§ã¯ããã®ãã¯ãã«ãªAIãã©ã®ããã«æŽ»çšããŠåçåã§ããã®ã§ããããïŒ
1. Claude 3.7ãæŽ»çšããã³ãŒãçæãµãŒãã¹
ã³ãŒããžã§ãã¬ãŒã·ã§ã³ã®å¯èœæ§
Claude 3.7ã®æå€§ã®åŒ·ã¿ã¯ãè€éãªã³ãŒããçè§£ãçæããèœåã§ãããã®èœåãæŽ»çšããŠã以äžã®ãããªãµãŒãã¹ãæäŸã§ããŸãïŒ
- ãã°ä¿®æ£ã»ãªãã¡ã¯ã¿ãªã³ã°ãµãŒãã¹
- ã¬ã¬ã·ãŒã³ãŒãã®ææ°å
- ç¹å®æ©èœã®å®è£ 代è¡
- ã¢ã«ãŽãªãºã æé©å
å®è·µäŸïŒãã°ä¿®æ£ãµãŒãã¹
äŸãã°ãã¯ã©ã€ã¢ã³ããã以äžã®ãããªãã°ã®ããPythonã³ãŒããåãåã£ããšããŸãïŒ
def calculate_average(numbers):
total = 0
for num in numbers:
total += num
return total / len(numbers)
# ãã¹ã
print(calculate_average([1, 2, 3, 4, 5])) # æ£åžžã±ãŒã¹
print(calculate_average([])) # ãã°çºçïŒ
ãã®ã³ãŒãã¯ç©ºãªã¹ããæž¡ãããå Žåã«ãŒãé€ç®ãšã©ãŒãçºçããŸããClaude 3.7ã䜿ã£ãŠä¿®æ£ããã«ã¯ïŒ
def calculate_average(numbers):
if not numbers:
return 0 # 空ãªã¹ãã®å Žåã¯0ãè¿ã
total = 0
for num in numbers:
total += num
return total / len(numbers)
# ãã¹ã
print(calculate_average([1, 2, 3, 4, 5])) # 3.0
print(calculate_average([])) # 0
ãã®ãããªåçŽãªäŸã§ããå®éã®ãããžã§ã¯ãã§ã¯ãã°ã®ä¿®æ£ã«æéããããããšããããŸããClaude 3.7ãæŽ»çšããããšã§ãå¹ççã«ãã°ãç¹å®ãä¿®æ£ã§ããŸãã
åçåã®ã¹ããã
- FiverrãUpworkãªã©ã®ããªãŒã©ã³ã¹ãã©ãããã©ãŒã ã§ãµãŒãã¹ãæäŸ
- åãã¯äœäŸ¡æ ŒïŒ$5çšåºŠïŒããå§ããè©äŸ¡ãéãã
- å®çžŸãå¢ãããæ®µéçã«äŸ¡æ ŒãäžããŠãã
- æçµçã«ã¯æ$1,000ã2,000ã®åå ¥ãå¯èœ
2. AIã©ã€ãã£ã³ã°ã«ãããã¯ãã«ã«ã³ã³ãã³ãå¶äœ
ãã¯ãã«ã«ã©ã€ãã£ã³ã°ã®éèŠ
æè¡ããã°ãããã¥ã¡ã³ãããã¥ãŒããªã¢ã«ãªã©ã®ãã¯ãã«ã«ã³ã³ãã³ãã¯åžžã«é«ãéèŠããããŸããClaude 3.7ã®æç« çæèœåãšã³ãŒãçè§£èœåãçµã¿åãããããšã§ã質ã®é«ããã¯ãã«ã«ã³ã³ãã³ããå¹ççã«äœæã§ããŸãã
å®è·µäŸïŒæè¡ããã°ã®äœæ
äŸãã°ãReact Hooksã«ã€ããŠã®æè¡ããã°èšäºãäœæããå ŽåïŒ
- èšäºã®æ§æãClaude 3.7ã«èããŠããã
- åã»ã¯ã·ã§ã³ã®è©³çްãªå 容ãçæ
- ã³ãŒãäŸãå«ããå®è£ ãµã³ãã«ãäœæ
- èªåã®çµéšãç¥èŠãå ããŠç·šéã»æŽç·Ž
// useStateããã¯ã®åºæ¬çãªäœ¿ãæ¹
import React, { useState } from 'react';
function Counter() {
// [çŸåšã®ç¶æ
, ç¶æ
ãæŽæ°ãã颿°] = useState(åæå€)
const [count, setCount] = useState(0);
return (
ã«ãŠã³ã: {count}
setCount(count + 1)}>
å¢å
setCount(count - 1)}>
æžå°
);
}
export default Counter;
åçåã®æ¹æ³
- èªåã®ããã¯ããã°ãç«ã¡äžããåºååå ¥ãã¢ãã£ãªãšã€ãã§åçå
- äŒæ¥åãã«ãã¯ãã«ã«ã©ã€ãã£ã³ã°ãµãŒãã¹ãæäŸ
- ãªã³ã©ã€ã³ãã©ãããã©ãŒã ïŒMediumãQiitaãªã©ïŒã§ææäŒå¡åãã³ã³ãã³ããäœæ
- ãã¯ãã«ã«ããã¥ã¡ã³ãäœæã®è«è²
AIã䜿ã£ãããã°éå¶ã§ã¯ãSEO察çãéèŠã§ããé©åãªããŒã¯ãŒãéžå®ãšè³ªã®é«ãã³ã³ãã³ããçµã¿åãããããšã§ãæ€çŽ¢ãšã³ãžã³ã§ã®äžäœè¡šç€ºãçããŸã[1][8]ã
3. AIã䜿ã£ãèªååãµãŒãã¹ã®éçº
èªååã®å¯èœæ§
Claude 3.7ã®èœåãæŽ»ãããŠãæ§ã ãªæ¥åããã»ã¹ãèªååããããŒã«ããµãŒãã¹ãéçºã§ããŸããç¹ã«æ³šç®ãã¹ãåéã¯ïŒ
- ããŒã¿åŠçã»åæã®èªåå
- ã¬ããŒãçæã®èªåå
- ã¯ãŒã¯ãããŒæé©å
- ãã£ãããããéçº
å®è·µäŸïŒããŒã¿åæèªååããŒã«
äŸãã°ãCSVããŒã¿ãåæããŠæŽå¯ãæäŸããç°¡åãªPythonã¹ã¯ãªãããéçºã§ããŸãïŒ
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
def analyze_sales_data(csv_path):
# ããŒã¿èªã¿èŸŒã¿
df = pd.read_csv(csv_path)
# åºæ¬çµ±èšéã®èšç®
stats = df.describe()
# æå¥å£²äžã®éèš
df['date'] = pd.to_datetime(df['date'])
df['month'] = df['date'].dt.strftime('%Y-%m')
monthly_sales = df.groupby('month')['sales'].sum()
# ã°ã©ãäœæ
plt.figure(figsize=(12, 6))
monthly_sales.plot(kind='bar')
plt.title('æå¥å£²äžæšç§»')
plt.tight_layout()
plt.savefig('monthly_sales.png')
# çžé¢åæ
correlation = df.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation, annot=True, cmap='coolwarm')
plt.title('倿°éã®çžé¢é¢ä¿')
plt.tight_layout()
plt.savefig('correlation.png')
# ã¬ããŒãçæ
report = f"""
# 売äžããŒã¿åæã¬ããŒã
## çææ¥æ: {datetime.now().strftime('%Y-%m-%d %H:%M')}
## åºæ¬çµ±èšé
{stats}
## æå¥å£²äžæšç§»

## çžé¢åæ

"""
with open('sales_report.md', 'w', encoding='utf-8') as f:
f.write(report)
return "åæå®äºïŒã¬ããŒããçæãããŸããã"
# 䜿çšäŸ
analyze_sales_data('sales_data.csv')
ãã®ãããªããŒã«ãéçºããç¹å®ã®æ¥çãæ¥åã«ç¹åãããããšã§ãé«ãä»å 䟡å€ãæäŸã§ããŸãã
åçåã¢ãã«
- SaaSïŒSoftware as a ServiceïŒãšããŠæé¡èª²é
- ã«ã¹ã¿ãã€ãºéçºã®è«è²
- å°å ¥ã³ã³ãµã«ãã£ã³ã°ãµãŒãã¹
- 䜿çšéããŒã¹ã®åŸé課é
AIã³ã³ãµã«ãã£ã³ã°ãµãŒãã¹ã®æäŸ
AIã«é¢ããç¥èãšçµéšã掻ãããŠãäŒæ¥åãã«ã³ã³ãµã«ãã£ã³ã°ãµãŒãã¹ãæäŸããããšãæå¹ãªåçåæ¹æ³ã§ãã
ã³ã³ãµã«ãã£ã³ã°ã®åé
- AIå°å ¥æŠç¥ã®çå®
- AIããŒã«éžå®ã®ã¢ããã€ã¹
- ããã³ãããšã³ãžãã¢ãªã³ã°æå°
- AIãæŽ»çšããæ¥åå¹çåææ¡
åçåã®ãã€ã³ã
- ç¹å®ã®æ¥çãçšéã«ç¹åãã
- ããã°ãSNSã§å°éç¥èãã¢ããŒã«
- ã»ãããŒãã¯ãŒã¯ã·ã§ãããéå¬
- æåäºäŸãç©ã¿äžããããŒããã©ãªãªãæ§ç¯
æé¡å¥çŽããŒã¹ã§ã³ã³ãµã«ãã£ã³ã°ãµãŒãã¹ãæäŸããããšã§ãå®å®ããåå ¥ãåŸãããšãã§ããŸã[10]ã
ããã³ãããšã³ãžãã¢ãªã³ã°ãµãŒãã¹
Claude 3.7ã®èœåãæå€§éã«åŒãåºãããã«ã¯ãé©åãªããã³ããïŒæç€ºïŒãéèŠã§ãããã®å°éç¥èãæŽ»ããããµãŒãã¹ãæäŸã§ããŸãã
ãµãŒãã¹å 容
- æ¥åç¹ååããã³ããã®éçº
- ããã³ããã©ã€ãã©ãªã®æ§ç¯ã»è²©å£²
- ããã³ããæé©åã³ã³ãµã«ãã£ã³ã°
å®è·µäŸïŒããŒã±ãã£ã³ã°åãããã³ãã
# ããŒã±ãã£ã³ã°ã³ããŒçæããã³ãã
## 補åæ
å ±
補åå: [補åå]
ã«ããŽãª: [ã«ããŽãª]
äž»ãªç¹åŸŽ:
- [ç¹åŸŽ1]
- [ç¹åŸŽ2]
- [ç¹åŸŽ3]
## ã¿ãŒã²ããå±€
- 幎霢局: [幎霢局]
- æ§å¥: [æ§å¥]
- èå³é¢å¿: [èå³é¢å¿]
## åžæããããŒã³
[ã«ãžã¥ã¢ã«/ãã©ãŒãã«/ãšãã«ã®ãã·ã¥/èœã¡çãã]
## åºå圢åŒ
1. ãã£ããã³ã㌠(20æå以å
)
2. èŠåºã (30æå以å
)
3. æ¬æ (100æå以å
)
4. CTA (ã³ãŒã«ãã¥ã¢ã¯ã·ã§ã³)
ãã®ãããªããã³ãããã³ãã¬ãŒããæ¥çš®ãçšéããšã«éçºãã販売ããããšãã§ããŸãã
åçåã®æ¹æ³
- ããã³ããããŒã±ãããã¬ã€ã¹ã§ã®è²©å£²
- ã«ã¹ã¿ã ããã³ããéçºãµãŒãã¹
- ããã³ããã©ã€ãã©ãªã®ãµãã¹ã¯ãªãã·ã§ã³
- ããã³ãããšã³ãžãã¢ãªã³ã°è¬åº§ã®éå¬
ããã³ãããšã³ãžãã¢ãªã³ã°ã¯æ¯èŒçæ°ããåéã§ãããå°éç¥èãæã€äººæã®éèŠãé«ãŸã£ãŠããŸã[7][9]ã
ãªã³ã©ã€ã³ã³ãŒã¹äœæ
Claude 3.7ãæŽ»çšããŠãããã°ã©ãã³ã°ãAIé¢é£ã®ãªã³ã©ã€ã³ã³ãŒã¹ãäœæã»è²©å£²ããããšã广çãªåçåæ¹æ³ã§ãã
ã³ãŒã¹äœæã®ããã»ã¹
- ããŒãºã®ãããããã¯ãç¹å®
- ã³ãŒã¹ã®æ§æãAIã§èšèš
- åã¬ãã¹ã³ã®å 容ãã³ãŒãäŸãæŒç¿åé¡ãäœæ
- è£è¶³è³æïŒããŒãã·ãŒããåèè³æãªã©ïŒã®æºå
åçåã®æ¹æ³
- UdemyãTeachableãSkillshareãªã©ã®ãã©ãããã©ãŒã ã§è²©å£²
- èªç€Ÿãµã€ãã§ã®çŽæ¥è²©å£²
- ãµãã¹ã¯ãªãã·ã§ã³ã¢ãã«ã®å°å ¥
- äŒæ¥åããã¬ãŒãã³ã°ããã±ãŒãžã®æäŸ
質ã®é«ãã³ãŒã¹ã¯é·æçãªåå ¥æºãšãªããäžåºŠäœæããã°ç¶ç¶çã«åçãçã¿åºããŸãã
æåã®ããã®ãã€ã³ã
- å°éæ§ãé«ãã: ç¹å®ã®åéããããã«ç¹åããããšã§ãç«¶äºãé¿ãé«å䟡ãå®çŸ
- å質ã«ãã ãã: AIã®åºåããã®ãŸãŸäœ¿ãã®ã§ã¯ãªããå°éç¥èã§ç·šéã»æ¹å
- ç¶ç¶çãªåŠç¿: AIæè¡ã¯æ¥éã«é²åãããããåžžã«ææ°æ å ±ããã£ããã¢ãã
- ããŒããã©ãªãªã®æ§ç¯: æåäºäŸãç©ã¿äžããä¿¡é Œæ§ãé«ãã
- ãããã¯ãŒãã³ã°: 忥è ãã¯ã©ã€ã¢ã³ããšã®é¢ä¿æ§ç¯ã§ç޹仿¡ä»¶ãç²åŸ
ãŸãšã
Claude 3.7 Sonnetã®ãããªææ°AIããŒã«ã¯ãããã°ã©ããŒããšã³ãžãã¢ã«ãšã£ãŠåŒ·åãªæŠåšãšãªããŸãããã®èœåãçè§£ããé©åã«æŽ»çšããããšã§ãæ§ã ãªå¯æ¥ãåçåã®å¯èœæ§ãåºãããŸãã
éèŠãªã®ã¯ãAIããã ã®ããŒã«ãšããŠäœ¿ãã®ã§ã¯ãªããããªãã®å°éç¥èãšçµã¿åãããŠç¬èªã®äŸ¡å€ãçã¿åºãããšã§ããAIãã§ããããšãšã§ããªãããšãèŠæ¥µãã人éãªãã§ã¯ã®åµé æ§ãå°éæ§ãå ããããšã§ãç«¶äºåã®ãããµãŒãã¹ãæäŸã§ããŸãã
ä»å玹ä»ããã¢ã€ãã¢ããã£ããã«ããã²ããªãèªèº«ã®AIãæŽ»çšãã坿¥ã«ãã£ã¬ã³ãžããŠã¿ãŠãã ããïŒ
çããã¯ã©ã®ãããªAIæŽ»çšæ³ãèããŠããŸããïŒã³ã¡ã³ãæ¬ã§ãã²å ±æããŠãã ããããŸããç¹å®ã®ãããã¯ã«ã€ããŠè©³ããç¥ãããå Žåã¯ããæ°è»œã«ãªã¯ãšã¹ããã ããïŒ
次åã®èšäºããæ¥œãã¿ã«ïŒ
æåŸã«ïŒæ¥åå§èšã®ãçžè«ãæ¿ããŸã
ç§ã¯ãæ¥åå§èšãšã³ãžãã¢ãšããŠWEBå¶äœãã·ã¹ãã éçºãè«ãè² ã£ãŠããŸããææ°æè¡ã掻çšããã¬ã¹ãã³ã·ããªWebãµã€ããã€ã³ã¿ã©ã¯ãã£ããªã¢ããªã±ãŒã·ã§ã³ãAPI飿ºãªã©ãå¹ åºãããŒãºã«å¯Ÿå¿å¯èœã§ãã
ã課é¡è§£æ±ºã«åãã峿Šåãæ¬²ããããé«å質ãªWebå¶äœãäŸé Œãããããšããæ¹ã¯ããã²ãæ°è»œã«ãçžè«ãã ãããäžç·ã«ããžãã¹ã®æé·ãç®æããŸãããïŒ