2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

物理の方程式備忘録

Last updated at Posted at 2022-11-24

忘れちゃう数学の関数周りの事項の備忘録

長さゲージと速さゲージの間のゲージ変換

長さゲージ

$$
\begin{align}
\mathrm{i} \frac{\partial}{\partial t} \tilde{\psi}_i(t)=
\left[\frac{1}{2}\hat{p}^2 + \hat{v} + \hat{x}E(t) \right] \tilde{\psi}_i(t)
\end{align}
$$
$$
\hat{\tilde{\rho}}(t) = 2 \sum_i \tilde{\psi}_i(t) \tilde{\psi}_i^\dagger (t)
$$

$$
\hat{O}(t) = 2\sum_i \left\langle \tilde{\psi}_i(t) \left| \hat{\tilde{O}}(t) \right| \tilde{\psi}_i(t) \right\rangle
$$

$$
\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}t} \hat{\tilde{\rho}} = \left[
\left\{\frac{1}{2}\hat{p}^2 + \hat{v} + \hat{x}E(t) \right\} , \hat{\tilde{\rho}}\right] + \hat{\tilde{s}}
$$

ゲージ変換

$$
\psi_i(t) = e^{\mathrm{i}A(t) \hat{x}} \tilde{\psi}_i(t)
$$

速度ゲージ

$$
\begin{align}
\mathrm{i} \frac{\partial}{\partial t} \psi_i(t)=
\left[\frac{1}{2}\left(\hat{p} + A(t)\right)^2 + e^{-\mathrm{i}A(t) \hat{x}}\hat{v} e^{+\mathrm{i}A(t) \hat{x}} \right] \psi_i(t)
\end{align}
$$
$$\hat{\rho}(t) = 2 \sum_i \psi_i(t) \psi_i^\dagger (t)
= e^{+\mathrm{i}A(t) \hat{x}} \hat{\tilde{\rho}}(t) e^{-\mathrm{i}A(t) \hat{x}}
$$

$$
O(t) = 2\sum_i \left\langle \psi_i(t) \left| \hat{O}(t) \right| \psi_i(t) \right\rangle, \quad \hat{O}(t) = e^{+\mathrm{i}A(t) \hat{x}}\hat{\tilde{O}}(t) e^{-\mathrm{i}A(t) \hat{x}}
$$

$$
\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}t} \hat{\rho} = \left[
\left\{\frac{1}{2}\left(\hat{p} + A(t)\right)^2 + e^{-\mathrm{i}A(t) \hat{x}}\hat{v} e^{+\mathrm{i}A(t) \hat{x}} \right\} , \hat{\rho}\right] + \hat{s}
$$
$$
\hat{s} = e^{+\mathrm{i}A(t) \hat{x}} \hat{\tilde{s}} e^{-\mathrm{i}A(t) \hat{x}}
$$

Bloch軌道

$$
\frac{1}{i}\frac{\partial}{\partial k} e^{ikx} u_{bk}(x)= e^{ikx}\left(x + \frac{1}{i}\frac{\partial}{\partial k}\right)u_{bk}(x)
$$

Hartree-Fock方程式

軌道が一般に両方のスピンの成分を独立して持つとき

$$
E_{\mathrm{tot}} = E_{\mathrm{kin}}+E_{\mathrm{pot}}+E_{\mathrm{MF}}
$$

$s=\uparrow, \downarrow$あるいは$s=\alpha, \beta$の二値。

$$
\begin{align}
E_{\mathrm{kin}}+E_{\mathrm{pot}} = \sum_{ss'} \iint \mathrm{d}^3r \mathrm{d}^3r' \gamma (\mathbf{r}s, \mathbf{r}'s') h(\mathbf{r}'s', \mathbf{r}s) \\
\frac{\delta ( E_{\mathrm{kin}}+E_{\mathrm{pot}})}{\delta \gamma(\mathbf{r}s,\mathbf{r}'s')} = \
h(\mathbf{r}'s', \mathbf{r}s)
\end{align}
$$

$$
\begin{align}
E_{\mathrm{MF}} [\gamma] \
= \
E_{\mathrm{H}}[\gamma] + E_{\mathrm{F}}[\gamma], \\
\gamma = \sum_i^N \phi_i \phi_i^\dagger, \quad \
\left\langle \left. \mathbf{r} s \right| \phi_i \right\rangle = \varphi_{i}(\mathbf{r} s)
\end{align}
$$

$$
\begin{align}
E_{\mathrm{F}}[\gamma] \
= \
-\frac{1}{2} \sum_{ss'} \iint \mathrm{d}^3r \mathrm{d}^3 r' \gamma(\mathbf{r} s, \mathbf{r}' s') w(\mathbf{r} s, \mathbf{r}' s') \gamma(\mathbf{r}' s', \mathbf{r} s)
\end{align}
$$

軌道が偶数本あって、奇数番目がアップスピンで、偶数番目がダウンスピン、かつ$(n-1)/2$番目と$n/2$番目の軌道関数が同じ形の場合

ポテンシャルエネルギーがスピンに対して対角的な場合
$$
\begin{align}
E_{\mathrm{kin}}+E_{\mathrm{pot}} = \iint \mathrm{d}^3r \mathrm{d}^3r' \rho (\mathbf{r}, \mathbf{r}') h(\mathbf{r}', \mathbf{r}) \\
\frac{\delta (E_{\mathrm{kin}}+E_{\mathrm{pot}})}{\delta \rho(\mathbf{r},\mathbf{r}')} = \
h(\mathbf{r}', \mathbf{r})
\end{align}
$$

$$
\begin{align}
E_{\mathrm{kin}}+E_{\mathrm{pot}} = 2 \sum_{i} \iint \mathrm{d}^3r \mathrm{d}^3r' \varphi_i (\mathbf{r}) \varphi_i^* (\mathbf{r}') h(\mathbf{r}', \mathbf{r}) \\
\frac{\delta (E_{\mathrm{kin}}+E_{\mathrm{pot}})}{\delta \varphi_i^* (\mathbf{r})} = \
2 \int \mathrm{d}^3r' h(\mathbf{r}, \mathbf{r}') \varphi_i (\mathbf{r}')
\end{align}
$$

$$
\begin{align}
E_{\mathrm{MF}} [\rho] \
= \
E_{\mathrm{H}}[\rho] + E_{\mathrm{F}}[\rho], \\
\rho = 2\sum_i^{N/2} \varphi_i \varphi_i^\dagger, \quad \
\left\langle \left. \mathbf{r} \right| \varphi_i \right\rangle = \varphi_{i}(\mathbf{r})
\end{align}
$$
粒子間相互作用$w$がスピンに依存しない場合$w(\mathbf{r} s, \mathbf{r}' s') \to w(\mathbf{r}, \mathbf{r}')$
$$
\begin{align}
E_{\mathrm{F}}[\rho] \
= \
-\frac{1}{4} \iint \mathrm{d}^3r \mathrm{d}^3 r' \rho(\mathbf{r}, \mathbf{r}') w(\mathbf{r} , \mathbf{r}' ) \rho(\mathbf{r}', \mathbf{r} )
\end{align}
$$

$$
\begin{align}
\frac{\delta E_{\mathrm{F}}}{\delta \rho(\mathbf{r}, \mathbf{r}')} \
= \
-\frac{1}{2} w(\mathbf{r} , \mathbf{r}' ) \rho(\mathbf{r}', \mathbf{r} )
\end{align}
$$

$$
\begin{align}
E_{\mathrm{F}}[\varphi, \varphi^* ] \
= \
-\sum_{ij} \iint \mathrm{d}^3r \mathrm{d}^3 r' \varphi_i(\mathbf{r})\varphi_i^*( \mathbf{r}') w(\mathbf{r} , \mathbf{r}' ) \varphi_j(\mathbf{r}') \varphi_j^{}(\mathbf{r})
\end{align}
$$

(なぜか最後の軌道関数に複素共役$\bullet^*$をつけるとバグるので外してある)

$$
\begin{align}
\frac{\delta E_{\mathrm{F}}}{\delta \varphi_i^* (\mathbf{r})} \
= \
-2 \sum_j \varphi_j(\mathbf{r}) \int \mathrm{d}^3r w(\mathbf{r} , \mathbf{r}' ) \varphi_j^*( \mathbf{r}' ) \varphi_i(\mathbf{r}') \
= \
-\int \mathrm{d}^3r' w(\mathbf{r} , \mathbf{r}' ) \rho(\mathbf{r}, \mathbf{r}' ) \varphi_i(\mathbf{r}')
\end{align}
$$

$$
\begin{align}
E_{\mathrm{H}}[\rho ] \
= \
\frac{1}{2}\sum_{ij} \iint \mathrm{d}^3r \mathrm{d}^3 r' \rho(\mathbf{r}, \mathbf{r}) w(\mathbf{r} , \mathbf{r}' ) \rho(\mathbf{r}', \mathbf{r}')
\end{align}
$$

$$
\begin{align}
\frac{\delta E_{\mathrm{H}}}{\delta \rho(\mathbf{r}, \mathbf{r}')} \
= \
\delta (\mathbf{r}', \mathbf{r})\int \mathrm{d}^3 r'' w(\mathbf{r} , \mathbf{r}'' ) \rho(\mathbf{r}'', \mathbf{r} '')
\end{align}
$$

$$
\begin{align}
E_{\mathrm{H}}[\varphi, \varphi^* ] \
= \
2\sum_{ij} \iint \mathrm{d}^3r \mathrm{d}^3 r' \varphi_i(\mathbf{r})\varphi_i^*( \mathbf{r}) w(\mathbf{r} , \mathbf{r}' ) \varphi_j(\mathbf{r}') \varphi_j^{}(\mathbf{r}')
\end{align}
$$

(なぜか最後の軌道関数に複素共役$\bullet^*$をつけるとバグるので外してある)

$$
\begin{align}
\frac{\delta E_{\mathrm{H}}}{\delta \varphi_i^* (\mathbf{r})} \
= \
4 \varphi_i(\mathbf{r}) \sum_j \int \mathrm{d}^3r w(\mathbf{r} , \mathbf{r}' ) \varphi_j( \mathbf{r}' ) \varphi_j^*(\mathbf{r}') \
= \
2 \varphi_i(\mathbf{r}) \int \mathrm{d}^3r' w(\mathbf{r} , \mathbf{r}' ) \rho(\mathbf{r}', \mathbf{r}' )
\end{align}
$$

$$
\begin{align}
\frac{\delta E_{\mathrm{tot}}}{\delta \varphi_i^* (\mathbf{r})} = 2 \left[ \int \mathrm{d}^3r' h(\mathbf{r}, \mathbf{r}') \varphi_i (\mathbf{r}') + \varphi_i(\mathbf{r}) \int \mathrm{d}^3r' w(\mathbf{r} , \mathbf{r}' ) \rho(\mathbf{r}', \mathbf{r}' ) - \frac{1}{2}\int \mathrm{d}^3r' w(\mathbf{r} , \mathbf{r}' ) \rho(\mathbf{r}, \mathbf{r}' ) \varphi_i(\mathbf{r}') \right] \
= \
2 \int \mathrm{d}^3r' h_{\mathrm{HF}}(\mathbf{r}, \mathbf{r}') \varphi_i (\mathbf{r}')
\end{align}
$$

$$
\begin{align}
h_{\mathrm{HF}}(\mathbf{r}, \mathbf{r}') = \
h(\mathbf{r}, \mathbf{r}') + \left[ \int \mathrm{d}^3r'' w(\mathbf{r} , \mathbf{r}' ) \rho(\mathbf{r}'', \mathbf{r}'' )\right]\delta(\mathbf{r},\mathbf{r}') - \frac{1}{2} w(\mathbf{r} , \mathbf{r}' ) \rho(\mathbf{r}, \mathbf{r}' )
\end{align}
$$

$$
\begin{align}
h_{\mathrm{HF}}(\mathbf{r}', \mathbf{r}) = \
\frac{\delta E_{\mathrm{tot}}}{\delta \rho(\mathbf{r}, \mathbf{r}')}
\end{align}
$$

水素原子の波動関数について

規格化された1s軌道関数

$$
\begin{align}
\psi(\mathbf{r}) = \frac{1}{\sqrt{\pi}a_B^3}e^{-r/a_B} \\
\left\langle \left. \psi \right| \psi \right\rangle = \int_0^{2\pi} \! \mathrm{d}\phi \int_0^\pi \! \mathrm{d}\theta \int_0^\infty \! \mathrm{d} r \ r^2 \sin \theta |\psi(\mathbf{r})|^2 = 1
\end{align}
$$

Wolfram Alpha code: integrate(integrate(integrate(r^2*sin(phi)*(1/sqrt(pi*a_0^3)*exp(-r/a_0))^2,r,0,inf),phi,0,pi),theta,0,2*pi)

動径関数に対する半径の期待値

$$
\begin{align}\int_0^{2\pi} \! \mathrm{d}\phi \int_0^\pi \! \mathrm{d}\theta \int_0^\infty \! \mathrm{d} r \ r^3 \sin \theta |\psi(\mathbf{r})|^2 = \frac{3}{2}a_B\end{align}
$$
Wolfram Alpha code: integrate(integrate(integrate(r*r^2*sin(phi)*(1/sqrt(pi*a_0^3)*exp(-r/a_0))^2,r,0,inf),phi,0,pi),theta,0,2*pi)

平均二乗半径

$$
\begin{align}
\left\langle \mathbf{r}^2 \right\rangle = \int_0^{2\pi} \! \mathrm{d}\phi \int_0^\pi \! \mathrm{d}\theta \int_0^\infty \! \mathrm{d} r \ r^4 \sin \theta |\psi(\mathbf{r})|^2 = 3 a_B^2
\end{align}
$$
つまり$\sqrt{\left\langle \mathbf{r}^2 \right\rangle} = \sqrt{3}a_B$

Wolfram Alpha code: integrate(integrate(integrate(r^2*r^2*sin(phi)*(1/sqrt(pi*a_0^3)*exp(-r/a_0))^2,r,0,inf),phi,0,pi),theta,0,2*pi)

水素様原子

クーロンポテンシャル
$$
V(r;\mu,\epsilon_r)=\frac{1}{4\pi \epsilon_0 \epsilon_r}\frac{1}{r}
$$

半径(Bohr半径: $a_B$)
$$
a(\mu,\epsilon_r)= \frac{\epsilon_r}{\mu}a_B
$$

束縛エネルギー(Hartree: $E_H$)
$$
E_n(\mu, \epsilon_r) = \frac{\mu}{\epsilon_r^2} \left(\frac{1}{2}E_H \right)\frac{1}{n^2}
$$

2
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?