7
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

KaggleAdvent Calendar 2019

Day 16

データ分析者の為の VS Code スニペット集

Last updated at Posted at 2020-01-24

初めに

日頃,コードを書いていると,同じ内容を何度も書いていたり,検索していることが多々あります.そんな時,スニペットを登録しておくと,少ない手間で入力できるのでコーディングが捗ります.今回は,データ分析時に役立つスニペットを紹介します.

設定方法

VS Code でスニペットを登録する方法は,以下を参照してください.

内容

以下のライブラリに関するスニペットを作成します.

  • joblib
  • lightgbm
  • matplotlib
  • numpy
  • pandas
  • scikit-learn
  • seaborn
snippets/python.json
snippets/python.json
{
    "lgb": {
        "prefix": [
            "lgb",
            "import lightgbm as lgb"
        ],
        "body": "import lightgbm as lgb",
        "description": "Import LightGBM"
    },
    "np": {
        "prefix": [
            "np",
            "import numpy as np"
        ],
        "body": "import numpy as np",
        "description": "Import Numpy"
    },
    "pd": {
        "prefix": [
            "pd",
            "import pandas as pd"
        ],
        "body": "import pandas as pd",
        "description": "Import Pandas"
    },
    "plt": {
        "prefix": [
            "plt",
            "import matplotlib.pyplot as plt",
            "from matplotlib import ..."
        ],
        "body": "from matplotlib import pyplot as plt",
        "description": "Import Matplotlib"
    },
    "sns": {
        "prefix": [
            "sns",
            "import seaborn as sns"
        ],
        "body": "import seaborn as sns",
        "description": "Import seaborn"
    },
    "joblib.dump": {
        "prefix": [
            "joblib.dump",
            "from joblib import dump"
        ],
        "body": "from joblib import dump",
        "description": "Import `dump` in Joblib"
    },
    "joblib.load": {
        "prefix": [
            "joblib.load",
            "from joblib import load"
        ],
        "body": "from joblib import load",
        "description": "Import `load` in Joblib"
    },
    "sklearn.compose.make_column_transformer": {
        "prefix": [
            "sklearn.compose.make_column_transformer",
            "from sklearn.compose import ..."
        ],
        "body": "from sklearn.compose import make_column_transformer",
        "description": "Import `make_column_transformer` in scikit-learn"
    },
    "sklearn.datasets.load_*": {
        "prefix": [
            "sklearn.datasets.load_*",
            "from sklearn.datasets import ..."
        ],
        "body": "from sklearn.datasets import ${1:load_iris}",
        "description": "Import a function that loads a dataset"
    },
    "sklearn.pipeline.make_pipeline": {
        "prefix": [
            "sklearn.pipeline.make_pipeline",
            "from sklearn.pipeline import ..."
        ],
        "body": "from sklearn.pipeline import make_pipeline",
        "description": "Import `make_pipeline` in scikit-learn"
    },
    "logger = ...": {
        "prefix": "logger = ...",
        "body": "logger = logging.getLogger(${1:__name__})",
        "description": "Get a logger"
    },
    "dtrain = ...": {
        "prefix": "dtrain = ...",
        "body": "dtrain = lgb.Dataset(${1:X}, label=${2:y})",
        "description": "Create a LightGBM dataset instance"
    },
    "booster = ...": {
        "prefix": "booster = ...",
        "body": [
            "booster = lgb.train(",
            "\t${1:params},",
            "\t${2:dtrain},",
            "\t${3:# **kwargs}",
            ")"
        ],
        "description": "Train a LightGBM booster"
    },
    "ax = ...": {
        "prefix": "ax = ...",
        "body": [
            "ax = lgb.plot_importance(",
            "\t${1:booster},",
            "\t${2:# **kwargs}",
            ")"
        ],
        "description": "Plot feature importances"
    },
    "f, ax = ...": {
        "prefix": "f, ax = ...",
        "body": "f, ax = plt.subplots(figsize=${1:(8, 6)})",
        "description": "Create a figure and a set of subplots"
    },
    "df = ...": {
        "prefix": "df = ...",
        "body": [
            "df = pd.read_csv(",
            "\t${1:filepath_or_buffer},",
            "\t${2:# **kwargs}",
            ")"
        ],
        "description": "Read a csv file into a Pandas dataFrame"
    },
    "description = ...": {
        "prefix": "description = ...",
        "body": "description = ${1:df}.describe(include=${2:\"all\"})",
        "description": "Create a Pandas dataframe description"
    },
    "with pd.option_context(...": {
        "prefix": "with pd.option_context(...",
        "body": [
            "with.pd.option_context(",
            "\t\"display.max_rows\",",
            "\t${1:None},",
            "\t\"display.max_columns\",",
            "\t${2:None},",
            "):",
            "\tdisplay(${3:pass})"
        ],
        "description": "Set temporarily Pandas options"
    },
    "X, y = ...": {
        "prefix": "X, y = ...",
        "body": "X, y = ${1:load_iris}(return_X_y=True)",
        "description": "Load and return the dataset"
    },
    "X_train, X_test, ...": {
        "prefix": "X_train, X_test, ...",
        "body": [
            "X_train, X_test, y_train, y_test = train_test_split(",
            "\tX,",
            "\ty,",
            "\trandom_state=${1:0},",
            "\tshuffle=${2:True},",
            ")"
        ],
        "description": "Split arrays into train and test subsets"
    },
    "estimator = BaseEstimator(...": {
        "prefix": "estimator = BaseEstimator(...",
        "body": [
            "estimator = ${1:BaseEstimator}(",
            "\t${2:# **params}",
            ")"
        ],
        "description": "Create an scikit-learn estimator instance"
    },
    "estimator = make_pipeline(...": {
        "prefix": "estimator = make_pipeline(...",
        "body": [
            "estimator = make_pipeline(",
            "\t${1:estimator},",
            "\t${2:# *steps}",
            ")"
        ],
        "description": "Create a scikit-learn pipeline instance"
    },
    "estimator = make_column_transformer(...": {
        "prefix": "estimator = make_column_transformer(...",
        "body": [
            "estimator = make_column_transformer(",
            "\t(${1:estimator}, ${2:columns}),",
            "\t${3:# *transformers}",
            ")"
        ],
        "description": "Create a scikit-learn column transformer instance"
    },
    "estimator.fit(...": {
        "prefix": "estimator.fit(...",
        "body": [
            "${1:estimator}.fit(",
            "\t${2:X},",
            "\ty=${3:y},",
            "\t${4:# **fit_params}",
            ")"
        ],
        "description": "Fit the estimator according to the given training data"
    },
    "dump(...": {
        "prefix": "dump(...",
        "body": "dump(${1:estimator}, ${2:filename}, compress=${3:0})",
        "description": "Save the estimator"
    },
    "estimator = load(...": {
        "prefix": "estimator = load(...",
        "body": "estimator = load(${1:filename})",
        "description": "Load the estimator"
    },
    "y_pred = ...": {
        "prefix": "y_pred = ...",
        "body": "y_pred = ${1:estimator}.predict(${2:X})",
        "description": "Predict using the fitted model"
    },
    "X = ...": {
        "prefix": "X = ...",
        "body": "X = ${1:estimator}.transform(${2:X})",
        "description": "Transform the data"
    }
}

終わりに

新しいスニペットを思いついたら,随時更新します.

7
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
7
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?