0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

それ,numpy で書かない?-- 2 --

Last updated at Posted at 2023-12-06

それ,numpy で書かない?

Python ではリストがよく使われる。また,for ループが遅いのでリストに特化したリスト内包表記も推奨されることが多い。

それなりの根拠があるからではあるが...

課題:[[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] のような二重リストを作る。

[n×n, 2] の二重リストを trial 回作成し,処理時間の平均値と標準偏差を記録する。

from statistics import mean, stdev
from time import time
n = 1000
trial = 100

二重の for ループと append()

def for_loop(n):
    start = time()
    list1 = []
    for y in range(n):
        for x in range(n):
            list1.append([y, x])
    return time() - start

for_loop_times = [for_loop(n) for i in range(trial)]
print(f"二重for文  平均値: {mean(for_loop_times): .3f},  標準偏差: {stdev(for_loop_times): .3f}")
二重for文  平均値:  0.255,  標準偏差:  0.019

リスト内包表記で

def comprehension(n):
    start = time()
    list1 = [[y, x] for y in range(n) for x in range(n)]
    return time() - start

comprehension_times = [comprehension(n) for i in range(trial)]
print(f"comprehension  平均値: {mean(comprehension_times): .3f},  標準偏差: {stdev(comprehension_times): .3f}")
comprehension  平均値:  0.252,  標準偏差:  0.018

numpy で 二重 for ループ

import numpy as np

def numpy(n):
    start = time()
    a = np.zeros((n**2, 2), dtype=int)
    for i in range(n**2):
        a[i, 0] = i / n
        a[i, 1] = i % n
    return time() - start

numpy_times = [numpy(n) for i in range(trial)]
print(f"numpy  平均値: {mean(numpy_times): .3f},  標準偏差: {stdev(numpy_times): .3f}")
numpy  平均値:  0.162,  標準偏差:  0.001

numpy で 二重 for ループ(その2)

def numpy2(n):
    start = time()
    a = np.zeros((n**2, 2), dtype=int)
    for i in range(n):
        i0 = i*n
        for j in range(n):
            a[i0+j, 0] = i
            a[i0+j, 1] = j
    return time() - start

numpy_times2 = [numpy2(n) for i in range(trial)]
print(f"numpy2  平均値: {mean(numpy_times2): .3f},  標準偏差: {stdev(numpy_times2): .3f}")
numpy2  平均値:  0.153,  標準偏差:  0.004

numpy, itertools を使う

一行で書ける。

import itertools

def numpy3(n):
    start = time()
    a = np.array(list(itertools.product(range(n), repeat=2)))
    return time() - start

numpy_times3 = [numpy3(n) for i in range(trial)]
print(f"numpy3  平均値: {mean(numpy_times3): .3f},  標準偏差: {stdev(numpy_times3): .3f}")
numpy3  平均値:  0.193,  標準偏差:  0.004

結論

numpy() は for を使っても十分に速い。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?