0
Help us understand the problem. What are the problem?

posted at

scipy.stats: クラスカル・ウォリス検定 kruskal

scipy.stats: クラスカル・ウォリス検定 kruskal

独立標本の代表値の差の検定を行うノンパラメトリック検定である。

kruskal(*args, nan_policy='propagate', axis=0)

from scipy.stats import kruskal
import numpy as np

x = np.array([2.9, 3.0, 2.5, 2.6, 3.2])
y = np.array([3.8, 2.7, 4.0, 2.4])
z = np.array([2.8, 3.4, 3.7, 2.2, 2.0])
kruskal(x, y, z)
KruskalResult(statistic=0.7714285714285722, pvalue=0.6799647735788936)
a = np.array([41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 
        14, 34, 6, 30, 11, 1, 11, 4, 32, 23, 45, 115, 37])
b = np.array([29, 71, 39, 23, 21, 37, 20, 12, 13])
c = np.array([135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 
        35, 61, 79, 63, 16, 80, 108, 20, 52, 82, 50, 64, 59])
d = np.array([39, 9, 16, 78, 35, 66, 122, 89, 110, 44, 28, 65, 
        22, 59, 23, 31, 44, 21, 9, 45, 168, 73, 76, 118, 84, 85])
e = np.array([96, 78, 73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28, 
        9, 13, 46, 18, 13, 24, 16, 13, 23, 36, 7, 14, 30, 14, 18, 20])
kruskal(a, b, c, d, e)
KruskalResult(statistic=29.26657630611694, pvalue=6.900714118546782e-06)

Register as a new user and use Qiita more conveniently

  1. You can follow users and tags
  2. you can stock useful information
  3. You can make editorial suggestions for articles
What you can do with signing up
0
Help us understand the problem. What are the problem?