SpecialFunctions パッケージに含まれる関数一覧
Gamma Function
Function | Description |
---|---|
gamma(z) | gamma function $\Gamma(z)$ |
loggamma(x) | accurate log(gamma(x)) for large $x$ |
logabsgamma(x) | accurate log(abs(gamma(x))) for large $x$ |
logfactorial(x) | accurate log(factorial(x)) for large $x$; same as loggamma(x+1) for $x \gt 1$, zero otherwise |
digamma(x) | digamma function (i.e. the derivative of loggamma at $x$) |
invdigamma(x) | invdigamma function (i.e. inverse of digamma function at x using fixedpoint iteration algorithm) |
trigamma(x) | trigamma function (i.e the logarithmic second derivative of gamma at $x$) |
polygamma(m,x) | polygamma function (i.e the (m+1)-th derivative of the loggamma function at $x$) |
gamma(a,z) | upper incomplete gamma function $\Gamma(a, z)$ |
loggamma(a,z) | accurate log(gamma(a,x)) for large arguments |
gamma_inc(a,x,IND) | incomplete gamma function ratio P(a,x) and Q(a,x) (i.e evaluates P(a,x) and Q(a,x)for accuracy specified by IND and returns tuple (p,q)) |
beta_inc(a,b,x,y) | incomplete beta function ratio Ix(a,b) and Iy(a,b) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q)) |
gamma_inc_inv(a,p,q) | inverse of incomplete gamma function ratio P(a,x) and Q(a,x) (i.e evaluates x given P(a,x)=p and Q(a,x)=q |
beta(x,y) | beta function at $x$, $y$ |
logbeta(x,y) | accurate log(beta(x,y)) for large $x$ or $y$ |
logabsbeta(x,y) | accurate log(abs(beta(x,y))) for large $x$ or $y$ |
logabsbinomial(x,y) | accurate log(abs(binomial(n,k))) for large $n$ and $k$ near n/2 |
Exponential and Trigonometric Integrals
Function | Description |
---|---|
expint(ν, z) | exponential integral $\text{E}_\nu(z)$ |
expinti(x) | exponential integral $\text{E}_i(x)$ |
expintx(x) | scaled exponential integral $e^z$ $\text{E}_\nu(z)$ |
sinint(x) | sine integral $\text{S}_i(x)$ |
cosint(x) | cosine integral $\text{C}_i(x)$ |
Error Functions, Dawson’s and Fresnel Integrals
Function | Description |
---|---|
erf(x) | error function at $x$ |
erf(x,y) | accurate version of $\text{erf}(y) − \text{erf}(x)$ |
erfc(x) | complementary error function, i.e. the accurate version of $1 − \text{erf} (x)$ for large $x$ |
erfcinv(x) | inverse function to $\text{erfc}()$ |
erfcx(x) | scaledcomplementaryerrorfunction,i.e.accurate $e^{x^2} \text{erfc}(x)$ for large $x$ |
logerfc(x) | log of the complementary error function, i.e. accurate $\ln(\text{erfc}(x))$ for large $x$ |
logerfcx(x) | log of the scaled complementary error function, i.e. accurate $\ln(\text{erfc}(x))$ for large negative $x$ |
erfi(x) | imaginary error function defined as $−i\ \text{erf} (ix)$ |
erfinv(x) | inverse function to $\text{erf}()$ |
dawson(x) | scaled imaginary error function, a.k.a. Dawson function, i.e. accurate $\displaystyle \frac{\sqrt{\pi}}{2}e^{-x^2}\text{erfi}(x)$ for large $x$ |
Airy and Related Functions
Function | Description |
---|---|
airyai(z) | Airy Ai function at $z$ |
airyaiprime(z) | derivative of the Airy Ai function at $z$ |
airybi(z) | Airy Bi function at $z$ |
airybiprime(z) | derivative of the Airy Bi function at $z$ |
airyaix(z), airyaiprimex(z), airybix(z), airybiprimex(z) |
scaled Airy Ai function and kth derivatives at $z$ |
Bessel Functions
Function | Description |
---|---|
besselj(nu,z) | Bessel function of the first kind of order nu at $z$ |
besselj0(z) | besselj(0,z) |
besselj1(z) | besselj(1,z) |
besseljx(nu,z) | scaled Bessel function of the first kind of order nu at $z$ |
sphericalbesselj(nu,z) | Spherical Bessel function of the first kind of order nu at $z$ |
bessely(nu,z) | Bessel function of the second kind of order nu at $z$ |
bessely0(z) | bessely(0,z) |
bessely1(z) | bessely(1,z) |
besselyx(nu,z) | scaled Bessel function of the second kind of order nu at $z$ |
sphericalbessely(nu,z) | Spherical Bessel function of the second kind of order $\nu$ at $z$ |
besselh(nu,k,z) | Bessel function of the third kind (a.k.a. Hankel function) of order $\nu$ at $z$; $k$ must be either 1 or 2 |
hankelh1(nu,z) | besselh(nu, 1, z) |
hankelh1x(nu,z) | scaled besselh(nu, 1, z) |
hankelh2(nu,z) | besselh(nu, 2, z) |
hankelh2x(nu,z) | scaled besselh(nu, 2, z) |
besseli(nu,z) | modified Bessel function of the first kind of order $\nu$ at $z$ |
besselix(nu,z) | scaled modified Bessel function of the first kind of $\nu$ at $z$ |
besselk(nu,z) | modified Bessel function of the second kind of order $\nu$ at $z$ |
besselkx(nu,z) | scaled modified Bessel function of the second kind of $\nu$ at $z$ |
jinc(x) | scaled Bessel function of the first kind divided by x. A.k.a. sombrero or besinc |
Elliptic Integrals
Function | Description |
---|---|
ellipk(m) | complete elliptic integral of 1st kind $K(m)$ |
ellipe(m) | complete elliptic integral of 2nd kind $E(m)$ |
Zeta and Related Functions
Function | Description |
---|---|
eta(x) | Dirichlet eta function at $x$ |
zeta(x) | Riemann zeta function at $x$ |