1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

SpecialFunctions パッケージに含まれる関数一覧

Posted at

SpecialFunctions パッケージに含まれる関数一覧

Gamma Function

Function Description
gamma(z) gamma function $\Gamma(z)$
loggamma(x) accurate log(gamma(x)) for large $x$
logabsgamma(x) accurate log(abs(gamma(x))) for large $x$
logfactorial(x) accurate log(factorial(x)) for large $x$; same as loggamma(x+1) for $x \gt 1$, zero otherwise
digamma(x) digamma function (i.e. the derivative of loggamma at $x$)
invdigamma(x) invdigamma function (i.e. inverse of digamma function at x using fixedpoint iteration algorithm)
trigamma(x) trigamma function (i.e the logarithmic second derivative of gamma at $x$)
polygamma(m,x) polygamma function (i.e the (m+1)-th derivative of the loggamma function at $x$)
gamma(a,z) upper incomplete gamma function $\Gamma(a, z)$
loggamma(a,z) accurate log(gamma(a,x)) for large arguments
gamma_inc(a,x,IND) incomplete gamma function ratio P(a,x) and Q(a,x) (i.e evaluates P(a,x) and Q(a,x)for accuracy specified by IND and returns tuple (p,q))
beta_inc(a,b,x,y) incomplete beta function ratio Ix(a,b) and Iy(a,b) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q))
gamma_inc_inv(a,p,q) inverse of incomplete gamma function ratio P(a,x) and Q(a,x) (i.e evaluates x given P(a,x)=p and Q(a,x)=q
beta(x,y) beta function at $x$, $y$
logbeta(x,y) accurate log(beta(x,y)) for large $x$ or $y$
logabsbeta(x,y) accurate log(abs(beta(x,y))) for large $x$ or $y$
logabsbinomial(x,y) accurate log(abs(binomial(n,k))) for large $n$ and $k$ near n/2

Exponential and Trigonometric Integrals

Function Description
expint(ν, z) exponential integral $\text{E}_\nu(z)$
expinti(x) exponential integral $\text{E}_i(x)$
expintx(x) scaled exponential integral $e^z$ $\text{E}_\nu(z)$
sinint(x) sine integral $\text{S}_i(x)$
cosint(x) cosine integral $\text{C}_i(x)$

Error Functions, Dawson’s and Fresnel Integrals

Function Description
erf(x) error function at $x$
erf(x,y) accurate version of $\text{erf}(y) − \text{erf}(x)$
erfc(x) complementary error function, i.e. the accurate version of $1 − \text{erf} (x)$ for large $x$
erfcinv(x) inverse function to $\text{erfc}()$
erfcx(x) scaledcomplementaryerrorfunction,i.e.accurate $e^{x^2} \text{erfc}(x)$ for large $x$
logerfc(x) log of the complementary error function, i.e. accurate $\ln(\text{erfc}(x))$ for large $x$
logerfcx(x) log of the scaled complementary error function, i.e. accurate $\ln(\text{erfc}(x))$ for large negative $x$
erfi(x) imaginary error function defined as $−i\ \text{erf} (ix)$
erfinv(x) inverse function to $\text{erf}()$
dawson(x) scaled imaginary error function, a.k.a. Dawson function, i.e. accurate $\displaystyle \frac{\sqrt{\pi}}{2}e^{-x^2}\text{erfi}(x)$ for large $x$

Airy and Related Functions

Function Description
airyai(z) Airy Ai function at $z$
airyaiprime(z) derivative of the Airy Ai function at $z$
airybi(z) Airy Bi function at $z$
airybiprime(z) derivative of the Airy Bi function at $z$
airyaix(z), airyaiprimex(z),
airybix(z), airybiprimex(z)
scaled Airy Ai function and kth derivatives at $z$

Bessel Functions

Function Description
besselj(nu,z) Bessel function of the first kind of order nu at $z$
besselj0(z) besselj(0,z)
besselj1(z) besselj(1,z)
besseljx(nu,z) scaled Bessel function of the first kind of order nu at $z$
sphericalbesselj(nu,z) Spherical Bessel function of the first kind of order nu at $z$
bessely(nu,z) Bessel function of the second kind of order nu at $z$
bessely0(z) bessely(0,z)
bessely1(z) bessely(1,z)
besselyx(nu,z) scaled Bessel function of the second kind of order nu at $z$
sphericalbessely(nu,z) Spherical Bessel function of the second kind of order $\nu$ at $z$
besselh(nu,k,z) Bessel function of the third kind (a.k.a. Hankel function) of order $\nu$ at $z$; $k$ must be either 1 or 2
hankelh1(nu,z) besselh(nu, 1, z)
hankelh1x(nu,z) scaled besselh(nu, 1, z)
hankelh2(nu,z) besselh(nu, 2, z)
hankelh2x(nu,z) scaled besselh(nu, 2, z)
besseli(nu,z) modified Bessel function of the first kind of order $\nu$ at $z$
besselix(nu,z) scaled modified Bessel function of the first kind of $\nu$ at $z$
besselk(nu,z) modified Bessel function of the second kind of order $\nu$ at $z$
besselkx(nu,z) scaled modified Bessel function of the second kind of $\nu$ at $z$
jinc(x) scaled Bessel function of the first kind divided by x. A.k.a. sombrero or besinc

Elliptic Integrals

Function Description
ellipk(m) complete elliptic integral of 1st kind $K(m)$
ellipe(m) complete elliptic integral of 2nd kind $E(m)$

Zeta and Related Functions

Function Description
eta(x) Dirichlet eta function at $x$
zeta(x) Riemann zeta function at $x$
1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?